
- •2. Случайное событие
- •3. Основные типы событий. Алгебра событий.
- •4. Понятие вероятности события.
- •5. Теорема сложения вероятностей.
- •6. Сумма и произведение совместных событий и их геометрическая интерпретация.
- •7. Зависимые и независимые события. Теорема умножения вероятностей.
- •8.Формула полной вероятности.
- •10. Формула Бернулли.
- •11. Формула Пуассона и условия ее применимости.
- •12. Дискретные случайные события и возможности их описания.
- •13. Закон распределения дискретной случайной величины. Многоугольник распределения.
- •14. Функция распределения и ее свойства. Вероятность попадания случайной величины на заданный интервал.
- •15. Плотность распределения и ее свойства. Вероятностный и геометрический смысл плотности распределения.
- •16. Математическое ожидание случайной величины и его свойства.
- •17. Дисперсия и среднее квадратичное отклонение случайной величины и ее свойства.
- •18. Математическое ожидание и дисперсия числа появления события в независимых опытах.
- •19.Непрерывная случайная величина. Числовые характеристики непрерывных случайных величин.
- •22. Закон равномерного распределения.
- •23. Экспоненциальный (показательный) закон распределения.
- •25. Вероятность попадания в заданный интервал. Правило трех сигм
- •26. Система двух случайных величин. Ф-я распред, св-ва. Вероятн попадания в полуполосу и прямоугольник
- •28. Закон распределения случайных величин входящих в систему
- •24. Нормальное распределение. Функция Лапласа
- •29. Свойства коэффициента корреляции
- •31. Генеральная совокупность и выборка. Характеристики выборки.
- •34&35. Закон больших чисел и его следствие.
- •32. Статистическое распределение выборки. Эмпирическая функция распределения
- •33. Полигон и гистограмма.
- •30. Выборочная средняя и выборочная дисперсия.
- •37&39&41. Точечная и интервальная оценки. Доверительный интервал.
- •38. Основные методы определения точечных оценок.
17. Дисперсия и среднее квадратичное отклонение случайной величины и ее свойства.
Опр:дисперсией
D(x)
С.В.Х. называется математическое ожидание
квадрата ее отклонение от математического
ожидания D(x)=M[(x-
Если С.В. дискретная с конечным числом значений,то
D(x)=
,где
а= М(х)
Если
С.В.Х дискретная с бесконечно
счетным,множеством значений,тогда
дисперсия D(x)=
,a=M(x),если
ряд в правой части сходится
Опр:Средним
квадратическим отклонением
(х)
С.В.Х. называется число
Замечание:матем.ожидание М(х) характеризует среднее значение С.В.
Дисперсия D(x)характеризует квадратичное отклонение С.В. от среднего значения:
Св-ва
D(x):
1)D(c)=0:
2)D(k*x)=
*D(x)
Док-во:D(k*x)=M
=
M
=
3)дисперсия D(x+-y)=D(x)+D(Y)
4)D(x)=M(x2)-(M(x))2
Док-во:D(x)=M(x-M(x))2)=M(x2-2x*M(x)+M2(x))=M(x2)-2M(x)*M(M(x))+M(M2(x))=M(x2)-2M(x)*M(x)+M2(x)=M(x2)-M2(x)
M(x) M2(X)-постоянные величины
18. Математическое ожидание и дисперсия числа появления события в независимых опытах.
Пусть производится n независимых опытов, вероятность появления события в каждом из которых равна Р. Число появлений события в этих n опытах является случайной величиною Х распределённой по биномиальному закону. Однако, непосредственное вычисление её среднего значения громоздко. Для упрощения воспользуемся разложением, которым будем пользоваться в дальнейшем неоднократно: Число появления события в n опытах состоит из числа появлений события в отдельных опытах, т.е.
где
имеет
закон распределения (принимает значение
1, если событие в данном опыте произошло,
и значение 0, если событие в данном опыте
не появилось).
|
0 |
1 |
Р |
1-р |
р |
Поэтому
или
т.е. среднее число появлений события в n независимых опытах равно произведению числа опытов на вероятность появления события в одном опыте.
Например, если вероятность попадания в цель при одном выстреле равна 0,1, то среднее число попадания в 20 выстрелах равно 20×0,1=2.
Производится n независимых испытаний и вероятность появления события в каждом испытании равна р. Выразим, как и прежде, число появления события Х через число появления события в отдельных опытах
Так
как опыты независимы, то и связанные
с опытами случайные величины
независимы.
А в силу независимости
имеем
|
0 |
1 |
Р |
1-р |
р |
Но
каждая из случайных величин имеет закон
распределения и
,
поэтому по определению дисперсии
,
где q=1-p
В
итоге имеем
,
Среднее
квадратическое отклонение числа
появления событий в n независимых
опытах равно
.