Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры ТВ 10.01.13.docx
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
618.87 Кб
Скачать

17. Дисперсия и среднее квадратичное отклонение случайной величины и ее свойства.

Опр:дисперсией D(x) С.В.Х. называется математическое ожидание квадрата ее отклонение от математического ожидания D(x)=M[(x-

Если С.В. дискретная с конечным числом значений,то

D(x)= ,где а= М(х)

Если С.В.Х дискретная с бесконечно счетным,множеством значений,тогда дисперсия D(x)= ,a=M(x),если ряд в правой части сходится

Опр:Средним квадратическим отклонением (х) С.В.Х. называется число

Замечание:матем.ожидание М(х) характеризует среднее значение С.В.

Дисперсия D(x)характеризует квадратичное отклонение С.В. от среднего значения:

Св-ва D(x): 1)D(c)=0: 2)D(k*x)= *D(x)

Док-во:D(k*x)=M =

M =

3)дисперсия D(x+-y)=D(x)+D(Y)

4)D(x)=M(x2)-(M(x))2

Док-во:D(x)=M(x-M(x))2)=M(x2-2x*M(x)+M2(x))=M(x2)-2M(x)*M(M(x))+M(M2(x))=M(x2)-2M(x)*M(x)+M2(x)=M(x2)-M2(x)

M(x) M2(X)-постоянные величины

18. Математическое ожидание и дисперсия числа появления события в независимых опытах.

Пусть производится n независимых опытов, ве­роятность появления события в каждом из которых равна Р. Чис­ло появлений события в этих n опытах является случайной величиною Х распределённой по биномиальному закону. Однако, непосредственное вычисление её среднего значения громоздко. Для упрощения воспользуемся разложением, которым будем пользоваться в дальнейшем неоднократно:  Число   появления события в n опытах состоит из числа появлений события в отдельных опытах, т.е.

где   имеет закон распределения (принимает значение 1, если событие в данном опыте произошло, и значение 0, если событие в данном опыте не появилось).

0

1

Р

1-р

р

 

 

 

 

Поэтому

или

т.е. среднее число появлений события в n независимых опытах равно произведению числа опытов на вероятность появления события в одном опыте.

Например, если вероятность попадания в цель при одном выстреле равна 0,1, то среднее число попадания в 20 выстрелах равно 20×0,1=2.

Производится n независимых испытаний и вероятность появления события в каждом испытании равна р. Выразим, как и прежде, число появления события Х через число появления события в отдельных опытах

Так как опыты независимы, то и связанные с опытами случайные величины   независимы. А в силу независимости   имеем

0

1

Р

1-р

р


 

Но каждая из случайных величин имеет закон распределения и  , поэтому по определению дисперсии

,

где q=1-p

В итоге имеем 

Среднее квадратическое отклонение числа появления событий в n независимых опытах равно  .