Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры ТВ 10.01.13.docx
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
618.87 Кб
Скачать

8.Формула полной вероятности.

Опр.: пусть событие А может произойти только совместно с одним из событий Н1, Н2,…,Нn образующих полную группу несовместных событий, тогда соб. Н1, Н2,…,Нn называются гипотезами.

Теорема: вероятность соб.А наступающего совместно с гипотезами Н1, Н2,…,Нn равна:

- формула полной вероятности

где, Р(Нi) – вероятность i-той гипотезы

РНi(А) – вероятность соб.А при условии реализации гипотезы Нi

Доказательство: соб.А можно считать суммой попарно несовместных событий АН1, АН2, …АНn несовместные события, тогда из теорем сложения вероятностей:

Р(А)+Р(АН1+…+ АНn)=Р(АН1)+…+Р(АНn)=

Нi(А)* Р(Н1)+…+ РНn(А)* Р(Нn)=

9. Формула Бейеса.

Теорема гипотез (формула Байеса) – следствие теоремы умножения и ф-лы полной вероятности. Имеется группа несовместных гипотез H1,H2...Hn, чьи вероятности равны соответственно P(H1),P(H2)...P(Hn). В рез. Σ происходит событие А. Как следует изменить вероятности гипотез в связи с появлением А (найти условную вероятность P(Hi|A))? Выражая P(A) из ф-лы полной вероятности, имеем соотношение Байеса: .Док-во: вероятность появления А опред. по ф-ле полной вероятности: . Поищем условные вероятности при условии, что произошло событие А. По теореме умножения имеем . Подставим P(A), получим . чтд. Ф-лы Байеса позволяют переоценить вероятности после того, как становится известным результат испытания, в итоге которого появилось событие А.

10. Формула Бернулли.

Пусть производится серия из n независимых испытаний и в каждом испытании событие А наступает с одной и той же вероятностью P(A)=p и не наступает с вероятностью . Условно появление события А называется «успехом», а не появление - «неудачей». Испытания называются независимыми, если исход каждого последующего не зависит от исходов предыдущих испытаний. Последовательность независимых испытаний такого рода называется схемой Бернулли. Вероятность того, что в n независимых испытаниях событие А произойдет ровно m раз – Pn (m). Тогда имеет место формула Бернулли: Pn (m)= .

Доказательство: Рассмотрим серию из n испытаний, в которых событие А произошло m раз: .Вычислим вероятность этого произведения: P ( = =pmqnm . Pn (m)= .