
- •2. Случайное событие
- •3. Основные типы событий. Алгебра событий.
- •4. Понятие вероятности события.
- •5. Теорема сложения вероятностей.
- •6. Сумма и произведение совместных событий и их геометрическая интерпретация.
- •7. Зависимые и независимые события. Теорема умножения вероятностей.
- •8.Формула полной вероятности.
- •10. Формула Бернулли.
- •11. Формула Пуассона и условия ее применимости.
- •12. Дискретные случайные события и возможности их описания.
- •13. Закон распределения дискретной случайной величины. Многоугольник распределения.
- •14. Функция распределения и ее свойства. Вероятность попадания случайной величины на заданный интервал.
- •15. Плотность распределения и ее свойства. Вероятностный и геометрический смысл плотности распределения.
- •16. Математическое ожидание случайной величины и его свойства.
- •17. Дисперсия и среднее квадратичное отклонение случайной величины и ее свойства.
- •18. Математическое ожидание и дисперсия числа появления события в независимых опытах.
- •19.Непрерывная случайная величина. Числовые характеристики непрерывных случайных величин.
- •22. Закон равномерного распределения.
- •23. Экспоненциальный (показательный) закон распределения.
- •25. Вероятность попадания в заданный интервал. Правило трех сигм
- •26. Система двух случайных величин. Ф-я распред, св-ва. Вероятн попадания в полуполосу и прямоугольник
- •28. Закон распределения случайных величин входящих в систему
- •24. Нормальное распределение. Функция Лапласа
- •29. Свойства коэффициента корреляции
- •31. Генеральная совокупность и выборка. Характеристики выборки.
- •34&35. Закон больших чисел и его следствие.
- •32. Статистическое распределение выборки. Эмпирическая функция распределения
- •33. Полигон и гистограмма.
- •30. Выборочная средняя и выборочная дисперсия.
- •37&39&41. Точечная и интервальная оценки. Доверительный интервал.
- •38. Основные методы определения точечных оценок.
30. Выборочная средняя и выборочная дисперсия.
Выборочная дисперсия
Для
того чтобы охарактизировать рассеяние
наблюдаемых значений количественного
признака выборки вокруг своего среднего
значения
вводят сводную характеристику –выборочную
дисперсию. Выборочной дисперсией
называют среднее арифметическое
квадратов отклонения наблюдаемых
значений признака от их среднего
значения
если все значения
признака
выборки объема nразличны,
то
если же значения признака
имеет
соответственно частоты
причем
т.е. выборочная дисперсия есть средняя
взвешаная квадратов отклонения с весами
, равными соответствующим частотам.
Кроме дисперсии для характеристики
рассеяния значений признака выборочной
совокупности вокруг своего среднего
значения пользуются сводной характеристикой
– средним квадратическим отклонением.
Выборочным средним квадратическим
отклонением (стандартом) называют
квадратный корень из выборочной
дисперсии:
Выборочной
средней
наз.среднее
арифметическое значений признака
выборочной совокупности.
1) х1,х2,…,хn -все различны
n-объём выборки
2) х1,х2,…,хk -появляются с опред.частотой.
x1 – появляется n1 раз
x2 – n2
xk – nk
37&39&41. Точечная и интервальная оценки. Доверительный интервал.
Точечные оценки
Точечной нзв оценку, к-рая опред-ся одним числом, например: генеральная средняя, выборочная средняя, групповая и общая средние, генеральная дисперсия, выборочная дисперсия и др.
xi – значения выборки
При выборке малого объема точечная оценка может знач.отличаться от оцениваемого параметра, т.е. приводить к грубым ошибкам. По этой причине при небольшом объеме выборки следует пользоваться интервальными оценками.
Оценка неизвестного параметра называется интервальной, если она определяется 2 числами, концами интервала. Задачу интервального оценивания можно сформулировать так: по данным выборки построить числовой интервал (Ө1*;Ө 2*), относительно которого с заранее выбранной вероятностью γ можно утверждать, что внутри этого интервала находятся точные значения оцениваемого параметра. Интервал (Ө1*;Ө 2*), накрывающий с вероятностью γ истинное значение параметра Ө наз-ся доверительным интервалом. А вероятность γ наз-ся надежностью оценки или доверит. вероятностью. Часто дов. интервал выбирается симметрично относительно несмещенной точечной оценки Ө*, т.е. выбирается интервал вида (Ө*-ε; Ө*+ε) такой, что Р(|Ө-Ө*|<ε)=γ. Число ε>0 наз-ся точность оценки.
42-48. Проверка статистических гипотез.
Одна из часто встречающихся на практике задач состоит в том, должно ли на основании данной выборки быть принято или опровергнуто некоторое предположение (гипотеза) относительно генеральной совокупности (случайной величины). Под статистической гипотезой понимается всякое предположение о генеральной совокупности. Стат гипотезы делятся на:1)гип-зы о параметрах распределения известного вида, 2) гип-ps о виде неизвестного распр-я. Обычно выдвигают нулевую гип-зу Но (основную) и альтернативную ей Н1 (конкурирующую). Простая гип-за - гип-за, однозначно фиксирующая распределение наблюдений. В ней идет речь об одном значении параметра, иначе- сложная гип-за.
Этапы проверки статистических гипотез
Формулировка основной гипотезы H0 и конкурирующей гипотезы H1. Гипотезы должны быть чётко формализованы в математических терминах.
Задание вероятности α, называемой уровнем значимости и отвечающей ошибкам первого рода, на котором в дальнейшем и будет сделан вывод о правдивости гипотезы.
Расчёт статистики φ критерия такой, что:
её
величина зависит от исходной выборки
;
по её значению можно делать выводы об истинности гипотезы H0;
сама статистика φ должна подчиняться какому-то известному закону распределения, т.к. сама φ является случайной в силу случайности
.
Построение
критической области. Из области
значений φ выделяется
подмножество
таких
значений, по которым можно судить о
существенных расхождениях с
предположением. Его размер выбирается
таким образом, чтобы выполнялось
равенство
.
Это множество
и
называется критической
областью.