Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Элементарные функции.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
973.31 Кб
Скачать

Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций:

  • алгебраические:

    • степенная;

    • рациональная.

  • трансцендентные:

    • показательная и логарифмическая;

    • тригонометрические и обратные тригонометрические.

Каждую элементарную функцию можно задать формулой, то есть набором конечного числа символов, соответствующих используемым операциям. Все элементарные функции непрерывны на своей области определения.

Иногда к основным элементарным функциям относят также гиперболические и обратные гиперболические функции, хотя они могут быть выражены через перечисленные выше основные элементарные функции.

Область определения

Если показатель степени — целое число, то можно рассматривать степенную функцию на всей числовой прямой (кроме, возможно, нуля). В общем случае степенная функция определена при . Если , то функция определена также и при , иначе нуль является её особой точкой.

Рациональный показатель степени

  • Графики степенной функции при натуральном показателе n называются параболами порядка n. При получается функция , называемая прямой пропорциональной зависимостью.

  • Графики функций вида , где n — натуральное число, называются гиперболами порядка n. При получается функция , называемая обратной пропорциональной зависимостью.

  • Если , то функция есть арифметический корень степени n.

Пример: из третьего закона Кеплера вытекает, что период T обращения планеты вокруг Солнца связан с большой полуосью A её орбиты соотношением: (полукубическая парабола).

Рис. 1 Параболы порядка n: ; ; ; ; ;

Рис. 2. Гиперболы порядка n: ; ;

Свойства

  • Функция непрерывна и дифференцируема во всех точках, в окрестности которых она определена. Нуль, вообще говоря, является особой точкой; например, функция определена в нуле и его правой окрестности, но её производная в нуле не определена.

  • В интервале функция монотонно возрастает при и монотонно убывает при Значения функции в этом интервале положительны.

Рациональная функция — это дробь, числителем и знаменателем которой являются многочлены. Она имеет вид

где , — многочлены от любого числа переменных.

Частным случаем являются рациональные функции одного переменного:

, где P(x) и Q(x) — многочлены.

Другим частным случаем является отношение двух линейных функций — дробно-линейная функция.

Свойства

  • Любое выражение, которое можно получить из переменных с помощью четырёх арифметических действий, является рациональной функцией.

  • Множество рациональных функций замкнуто относительно арифметических действий и операции композиции.

  • Любая рациональная функция может быть представлена в виде суммы простейших дробей (см. Метод неопределённых коэффициентов), это применяется при аналитическом интегрировании.

Правильные дроби

Различают правильные и неправильные рациональные дроби, по аналогии с обычными числовыми дробями. Рациональная дробь называется правильной, если порядок знаменателя больше порядка числителя, и неправильной, если наоборот.

Любую неправильную рациональную дробь можно преобразовать в сумму некоторого многочлена и правильной рациональной дроби

Любую рациональную дробь многочленов с вещественными коэффициентами можно представить как сумму рациональных дробей, знаменателями которых являются выражения (a — вещественный корень Q(x)) либо (где не имеет действительных корней), причём степени k не больше кратности соответствующих корней в многочлене Q(x). На основании этого утверждения основана теорема об интегрируемости рациональной дроби. Согласно ей, любая рациональная дробь может быть интегрирована в элементарных функциях, что делает класс рациональных дробей весьма важным в математическом анализе.

Возведение в степень — бинарная операция, первоначально происходящая из многократного умножения натурального числа на самого себя. Обозначение: называется степенью с основанием и показателем .