- •1.Физиология возбудимых тканей: мембранный потенциал покоя, потенциал действия. Возбудимость, раздражимость.
- •2.Проведение возбуждения по нервному волокну и в синапсах.
- •3.Механизм мышечного сокращения. Микроструктура мышечного волокна. Теория скользящих нитей. Тетаническое сокращение.
- •4.Рефлексы. Структура и функция рефлекторной дуги (соматической и вегетативной).
- •5.Механизмы торможения в цнс. Возбуждающий и тормозной постсинаптический потенциалы. Суммация. Постсинаптическое и постсинаптическое торможение. Виды вторичного торможения.
- •6.Нервные центры и проведение в них возбуждения. Окклюзия, облегчение, суммация, иррадиация, синаптическая задержка, трансформация ритма и др.
- •7.Вегетативная нервная система, общий план строения, ее влияние на работу органов. Метасимпатический отдел вегетативной нервной системы.
- •8.Симпатическая нервная система, ее строение и функции. Роль в регуляции функций организма.
- •9.Парасимпатическая нервная система, ее строение и функции. Роль в регуляции функций организма.
- •10. Гуморальная регуляция функций. Гормоны, их химическая природа. Функции, общие свойства. Типы физиологического действия гормонов на организм.
- •11. Регуляция функций желез внутренней секреции. Гипоталамо-гипофизарные связи. Либерины, статины. Гормоны нейрогипофиза и аденогипофиза.
- •13.Кровь, ее функции, свойства.
- •14.Состав крови. Плазма. Белки плазмы крови. Форменные элементы крови.
- •15.Система свертывания крови. Сосудисто-тромбоцитарный и коагуляционный механизмы. Фибринолиз.
- •16.Группы крови человека и система резус. Переливание крови, его значение.
- •17.Свойства сердечной мышцы: автоматия, возбудимость, проводимость, сократимость.
- •18.Сердечный цикл.
- •19.Регуляция деятельности сердца: внутрисердечные и внесердечные механизмы, собственные и сопряженные кардиальные рефлексы.
- •20.Сосудистая система, ее функции.
- •21. Основы гемодинамики.
- •22.Микроциркуляция крови. Диффузия, фильтрация и осмотические силы. Фильтрационное давление, реабсорбционная сила.
- •23.Регуляция артериального давления: нервная и гуморальная.
- •24.Внешнее дыхание. Инспираторные и экспираторные мышцы. Внутриплевральное и внутрилегочное давление. Пневмоторакс.
- •25.Вентиляция легких и легочные объемы.
- •26.Газообмен и транспорт газов. Парциальное давление (напряжение). Кривая диссоциации оксигемоглобина.
- •27.Регуляция внешнего дыхания. Центральный механизм дыхания.
- •28.Основные типы пищеварения. Общие принципы регуляции функций пищеварительной системы.
- •29. Пищеварение в различных отделах желудочно-кишечного тракта.
- •30.Моторика различных отделов жкт. Глотание, жевание. Передвижение химуса.
- •31.Обмен веществ и энергии. Анаболизм и катаболизм. Этапы обмена веществ.
- •32.Основной обмен и суточный расход энергии.
- •33. Обмен белков, жиров, углеводов.
- •34. Принципы составления пищевых рационов.
- •35. Терморегуляция. Человек в системе температурной классификации животных. Температура тела и тепловой баланс.
- •36. Система терморегуляции. Терморецепторы. Реакции организма на охлаждение и тепловое воздействие.
- •37.Зрительный анализатор.
- •38.Слуховой анализатор.
- •39. Вестибулярный анализатор.
- •40.Обонятельный анализатор. Вкусовой анализатор.
- •41.Тактильный (кожный) анализатор.
- •42.Виды трудовой деятельности человека. Классификация труда по тяжести и напряженности.
- •43.Работоспособность, ее динамика.
- •44.Утомление, его виды, биологическая роль. Теории утомления.
- •45.Виды отдыха. Активный и пассивный отдых.
- •46.Особенности умственного труда.
- •47.Условный рефлекс. Правила и особенности выработки условных рефлексов. Условные рефлексы второго, третьего и т.Д. Порядков.
- •48.Высшие психические функции: память, эмоции, внимание, мотивации.
- •49.Физиология сна и бодрствования. Значение сна.
- •50 Общее представление об анализаторах.
- •12. Гормоны, регулирующие обмен веществ и развитие организма.
38.Слуховой анализатор.
Слуховой анализатор воспринимает звуковые сигналы, трансформирует механическую энергию этих колебаний в нервное возбуждение, которое субъективно воспринимается как звуковое ощущение.
Периферическая часть слухового анализатора (орган слуха) состоит из 3 основных отделов: звукоулавливающий аппарат (наружное ухо), звукопередающий аппарат (среднее ухо), звуковоспринимающий аппарат (внутреннее ухо).
Колебания барабанной перепонки передаются в среднее ухо, в котором содержится цепь соединенных между собой косточек: молоточка, наковальни и стремечка. Рукоятка молоточка прикреплена к барабанной перепонке, основание стремечка – к овальному окну.
В полости среднего уха давление приближается к атмосферному, это необходимо для нормальных колебаний барабанной перепонки. Уравновешиванию давления (при глотании) способствует специальное образование – евстахиева труба, которая соединяет носоглотку с полостью среднего уха.
Внутреннее ухо соединено со средним с помощью овального окна, в котором неподвижно укреплено основание стремечка. Внутреннее ухо состоит из костного и лежащего в нем перепончатого лабиринтов, в котором находятся вестибулярный и слуховой аппараты. К последнему относится улитка. Она разделена двумя мембранами на три хода или лестницы: барабанную, среднюю и вестибулярную. Вестибулярная и барабанная лестницы у верхушки улитки соединены между собой через геликотрему. Обе эти лестницы заполнены перилимфой, содержащей много ионов Na+. Средняя лестница изолирована и заполнена эндолимфой, богатой ионами К+ и напоминающей по своему составу внутриклеточную жидкость. Это обусловливает положительный заряд эндолимфы по отношению к перилимфе.
Основание барабанной лестницы сообщается со средним ухом с помощью еще одного отверстия – круглого окна.
На основной мембране средней лестницы расположен кортиев орган – собственно звуковоспринимающий аппарат, содержащий рецепторы – внутренние и наружные волосковые клетки, несущие только стереоцилии. Слуховые рецепторы – вторичночувствующие.
Над кортиевым органом находится текториальная (покровная) мембрана – желеобразная масса, соединенная с кортиевым органом и с внутренней стенкой улитки. Стереоцилии (волоски) наружных и внутренних волосковых клеток контактируют с текториальной мембраной. При движении основной мембраны покровная мембрана сгибает волоски рецепторных клеток. В результате деформации волосков возникает возбуждение волосковых клеток.
Механизм передачи звуковых колебаний. Звуковые колебания, воздействуя на систему слуховых косточек среднего уха, приводят к колебательным движениям мембраны овального окна, которая, прогибаясь, вызывает волнообразные перемещения перилимфы в вестибулярной и через геликотрему – в барабанной лестницах. Колебания перилимфы доходят до круглого окна и приводят к смещению его мембраны по направлению к среднему уху. Движения перилимфы верхней и нижней лестниц (каналов) передаются на вестибулярную мембрану, а затем на полость среднего канала, приводя в движение эндолимфу и базилярную мембрану.
Если на ухо действуют низкочастотные звуки (до 1000 Гц), то происходит смещение базилярной мембраны на всем ее протяжении. При действии высокочастотных колебаний происходит перемещение укороченного по длине колеблющегося столба жидкости ближе к овальному окну и наиболее жесткому и упругому участку базилярной мембраны. Вследствие смещений последней волоски рецептивных клеток контактируют с текториальной мембраной. При этом реснички волосковых клеток деформируются. В результате энергия звуковых колебаний трансформируется в электрический разряд (нервный импульс) волосковых клеток.
Помимо воздушной проводимости существует и костная (костями черепа). Ощущение звука возникает и тогда, когда вибрирующий предмет, например камертон, прикладывают к сосцевидному отростку височной кости, тогда звуковые колебания распространяются непосредственно через череп.
Проводящие пути и центры слухового анализатора. Нервный импульс возникает в волосковых клетках, передается биполярным нервным клеткам, расположенным в спиральном ганглии улитки (первый нейрон). Центральные отростки клеток спирального ганглия образуют слуховой, или кохлеарный, нерв (VIII пара ЧМН). Кохлеарный нерв проходит в продолговатый мозг и заканчивается на клетках кохлеарных ядер (второй нейрон). Нервные волокна от кохлеарных ядер в составе боковой петли доходят до верхней оливы (третий нейрон). Одна часть волокон латеральной петли достигает среднего мозга – ядер нижних бугров четверохолмия, другая – медиального коленчатого тела зрительных бугров, где происходит переключение и находится четвертый нейрон. Далее волокна в составе слуховой радиации заканчиваются в коре верхней части височной доли большого мозга, т.е. в центральной части слухового анализатора.
В спиральном ганглии методом разрушения и перерезок было показано пространственно раздельное представительство низких и высоких частот. Так, частичная перерезка волокон слухового нерва приводит к потере слуха на высоких частотах. При полной перерезке слухового нерва происходит потеря слуха на низких частотах.
Нижние бугры четверохолмия отвечают за ориентировочный рефлекс (поворот головы в сторону источника звука). Слуховая кора принимает участие в переработке звуковой информации в процессе дифференцировки звуков, она отвечает за бинауральный слух.
Механизм восприятия звуков различной частоты. Существуют две теории восприятия звуков. Согласно резонансной теории слуха Г.Д. Гельмгольца (1885 г.), базилярная мембрана состоит из отдельных волокон (струн резонатора), настроенных на звуки определенной частоты. Так, звуки высокой частоты воспринимаются короткими волокнами базилярной мембраны, расположенными ближе к основанию улитки, низкой частоты – длинными волокнами вершины улитки. Теория места основана на различной способности волосковых клеток, расположенных в разных местах базилярной мембраны, воспринимать звуки различной частоты.
Понижение слуховой чувствительности, развивающееся в процессе длительного действия звука большой интенсивности или после его прекращения, называют слуховой адаптацией. Ухо, адаптированное к тишине, обладает более низким порогом слуховой чувствительности. При длительном действии звуков большой интенсивности (громкая музыка, работа в шумных цехах) порог слуховой чувствительности повышается.
Способность человека и животного локализовать источник звука в пространстве называется пространственным слухом. Слуховая ориентация осуществляется двумя путями: определением местоположения самого звучащего объекта (первичная локализация) и с помощью эхолокаццц, т.е. восприятием отраженных от различных объектов звуковых волн. Эхолокация помогает ориентироваться в пространстве некоторым животным (дельфинам, летучим мышам), а также людям, потерявшим зрение. Пространственное восприятие звука возможно при наличии бинаурального слуха, т.е. способности определить местонахождение источника звука одновременно правым и левым ухом.
Человеческое ухо различает звуки по высоте (частоте) звуковых колебаний от 20 до 16 000 Гц, по громкости (силе звуковых колебаний, его амплитуде) и по тембру (окраске звука). Частоты выше 16000 Гц называются ультразвуковыми, а ниже 20 Гц – инфразвуковыми. Для речи, хорошо воспринимаемой человеческим ухом, характерен диапазон от 200 до 3000 Гц – это речевая зона. С возрастом чувствительность к высоким частотам снижается (старческая тугоухость).
