
- •1.Физиология возбудимых тканей: мембранный потенциал покоя, потенциал действия. Возбудимость, раздражимость.
- •2.Проведение возбуждения по нервному волокну и в синапсах.
- •3.Механизм мышечного сокращения. Микроструктура мышечного волокна. Теория скользящих нитей. Тетаническое сокращение.
- •4.Рефлексы. Структура и функция рефлекторной дуги (соматической и вегетативной).
- •5.Механизмы торможения в цнс. Возбуждающий и тормозной постсинаптический потенциалы. Суммация. Постсинаптическое и постсинаптическое торможение. Виды вторичного торможения.
- •6.Нервные центры и проведение в них возбуждения. Окклюзия, облегчение, суммация, иррадиация, синаптическая задержка, трансформация ритма и др.
- •7.Вегетативная нервная система, общий план строения, ее влияние на работу органов. Метасимпатический отдел вегетативной нервной системы.
- •8.Симпатическая нервная система, ее строение и функции. Роль в регуляции функций организма.
- •9.Парасимпатическая нервная система, ее строение и функции. Роль в регуляции функций организма.
- •10. Гуморальная регуляция функций. Гормоны, их химическая природа. Функции, общие свойства. Типы физиологического действия гормонов на организм.
- •11. Регуляция функций желез внутренней секреции. Гипоталамо-гипофизарные связи. Либерины, статины. Гормоны нейрогипофиза и аденогипофиза.
- •13.Кровь, ее функции, свойства.
- •14.Состав крови. Плазма. Белки плазмы крови. Форменные элементы крови.
- •15.Система свертывания крови. Сосудисто-тромбоцитарный и коагуляционный механизмы. Фибринолиз.
- •16.Группы крови человека и система резус. Переливание крови, его значение.
- •17.Свойства сердечной мышцы: автоматия, возбудимость, проводимость, сократимость.
- •18.Сердечный цикл.
- •19.Регуляция деятельности сердца: внутрисердечные и внесердечные механизмы, собственные и сопряженные кардиальные рефлексы.
- •20.Сосудистая система, ее функции.
- •21. Основы гемодинамики.
- •22.Микроциркуляция крови. Диффузия, фильтрация и осмотические силы. Фильтрационное давление, реабсорбционная сила.
- •23.Регуляция артериального давления: нервная и гуморальная.
- •24.Внешнее дыхание. Инспираторные и экспираторные мышцы. Внутриплевральное и внутрилегочное давление. Пневмоторакс.
- •25.Вентиляция легких и легочные объемы.
- •26.Газообмен и транспорт газов. Парциальное давление (напряжение). Кривая диссоциации оксигемоглобина.
- •27.Регуляция внешнего дыхания. Центральный механизм дыхания.
- •28.Основные типы пищеварения. Общие принципы регуляции функций пищеварительной системы.
- •29. Пищеварение в различных отделах желудочно-кишечного тракта.
- •30.Моторика различных отделов жкт. Глотание, жевание. Передвижение химуса.
- •31.Обмен веществ и энергии. Анаболизм и катаболизм. Этапы обмена веществ.
- •32.Основной обмен и суточный расход энергии.
- •33. Обмен белков, жиров, углеводов.
- •34. Принципы составления пищевых рационов.
- •35. Терморегуляция. Человек в системе температурной классификации животных. Температура тела и тепловой баланс.
- •36. Система терморегуляции. Терморецепторы. Реакции организма на охлаждение и тепловое воздействие.
- •37.Зрительный анализатор.
- •38.Слуховой анализатор.
- •39. Вестибулярный анализатор.
- •40.Обонятельный анализатор. Вкусовой анализатор.
- •41.Тактильный (кожный) анализатор.
- •42.Виды трудовой деятельности человека. Классификация труда по тяжести и напряженности.
- •43.Работоспособность, ее динамика.
- •44.Утомление, его виды, биологическая роль. Теории утомления.
- •45.Виды отдыха. Активный и пассивный отдых.
- •46.Особенности умственного труда.
- •47.Условный рефлекс. Правила и особенности выработки условных рефлексов. Условные рефлексы второго, третьего и т.Д. Порядков.
- •48.Высшие психические функции: память, эмоции, внимание, мотивации.
- •49.Физиология сна и бодрствования. Значение сна.
- •50 Общее представление об анализаторах.
- •12. Гормоны, регулирующие обмен веществ и развитие организма.
36. Система терморегуляции. Терморецепторы. Реакции организма на охлаждение и тепловое воздействие.
Терморегуляция осуществляется путем изменений отдачи тепла организмом. Важное значение она приобретает в поддержании постоянства температуры тела во время пребывания организма в условиях повышенной температуры окружающей среды. Информация о температуре участков тела идет от перефирических и центральных терморецепторов в центр терморегуляции, в гипоталамус. Терморецепторы-специализированные нервные клетки, особо чувствит. к температурным воздействиям. Виды: экстрорецепторы в еоже, инторецепторы, ссуды и внутренние органы и в ЦНС. Кожные бывают двух видов: Холодовые-повышают частоту импульсаций в ответ на охлаждение и снижают её когда температ. увеличив-ся (10-40град С и 45-50град С). Тепловые рецепторы-реагируют на температуру иначе, (20-50град С). Главный центр терморегуляции-Гипоталамус. В нем имеются различные нейроны: 1-термочувствит. (могут измен. на 0,01градС), 2-Нейроны, определ ур-нь поддерживающ. температ. тела в организме. В переднем гепоталам. центр теплоотдач. Данные о температуре крови передаются к нейронам гепоталамуса, устанавливающим "установочную точку терморегуляции".->Воздействие на теплоотдачу и теплопродукцию. Гормоны щитавидн. железы и адреналин выдел-ся при снижении температ. тела ->увеличивают теплопродукцию. Адреналин суживает переферич. сосуды и снижает теплоотдачу.Проц. обеспеч. постоянств. температ. тела: 1-Поведенчиские механизмы, 2-Вегетативн. механизмы(изменен. ур-ня обмена в-в, реакции сосудов.), 3-Адаптивные механ. (длительн. процесс). В случае охлаждения артериоллы суживаются, уменьшается потоотделение, начинает работать противоточный обмен. Артерии и вены расположенны рядом и между ними происходит обмен. При более интенсивном охлаждении начинается сократительн. томогинез (увелич.тонус мышц, затем холодов. доржь).Сократит. термогинез может увеличить холодов. дрожь. Несократительн. недрожательн. гинез.
37.Зрительный анализатор.
Зрительный анализатор – это совокупность структур, обеспечивающих восприятие энергии электромагнитных излучений с длиной волны от 400 до 700 мкм. Это важнейший из всех анализаторов (80-90% всей информации об окружающем мире).
Глаз – это периферическая часть зрительного анализатора. Внутренняя оболочка глазного яблока представлена сетчаткой, состоящей из 10 слоев высокодифференцированных нервных элементов, куда входят палочки (110 – 125 млн.) и колбочки (6–7 млн.) – фоторецепторы сетчатки. Место выхода зрительного нерва – слепое пятно, оно не содержит фоторецепторов и поэтому нечувствительно к свету. Палочки ответственны за сумеречное зрение. Колбочки воспринимают синий, зеленый и красный цвета.
Хрусталик представляет собой прозрачное эластическое тело в форме двояковыпуклой чечевицы, подвешенное при помощи цинновой связки. Особенность хрусталика состоит в его способности при ослаблении натяжения волокон связки менять свою форму, становиться более выпуклым за счет чего и осуществляется акт аккомодации (приспособление глаза к ясному видению предметов на расстоянии за счет изменения преломляющей способности хрусталика).
Если человек смотрит вдаль - хрусталик уплощен. При рассматривании близко расположенных от глаз предметов хрусталик становится более выпуклым. Цилиарные мышцы иннервируются парасимпатическими волокнами глазодвигательного нерва (III пара ЧМН).
Преломляющая сила оптической системы выражается в диоптриях. Диоптрия – это преломляющая сила линзы с фокусным расстоянием 100 см. В состоянии покоя аккомодации преломляющая сила равна 58–60 диоптриям и называется рефракцией.
При нормальной рефракции параллельные лучи от далеко расположенных предметов собираются на сетчатке в центральной ямке. К нарушениям рефракции относится близорукость, когда параллельные лучи фокусируются не на сетчатке, а впереди нее. Это возникает при чрезмерно большой длине глазного яблока или преломляющей силе глаза. Близкие предметы близорукий видит хорошо, а удаленные – расплывчато. Дальнозоркость – это такое нарушение рефракции, когда параллельные лучи от далеко расположенных предметов из-за малой длины глазного яблока или слабой преломляющей способности глаза фокусируются за сетчаткой.
Существует старческая дальнозоркость (пресбиопия) связанная с потерей хрусталиком эластичности, который плохо изменяет свою кривизну при натяжении цинновых связок. Поэтому точка ясного видения находится не на расстоянии 10 см от глаза, а отодвигается от него и близко расположенные предметы видны расплывчато.
Рецепторный аппарат глаза представлен сетчаткой. Палочки и колбочки состоят из двух сегментов – наружного, чувствительного к действию света и содержащего зрительный пигмент, и внутреннего, в котором находятся ядро и митохондрии, отвечающие за энергетический процесс в клетке.
При действии кванта света в рецепторах сетчатки происходит цепь сложных фотохимических реакций, связанных с распадом зрительных пигментов родопсина и йодопсина и их ресинтез в темноте.
Эти реакции приводят к гиперполяризации мембраны фоторецептора и возникновению рецепторного потенциала. Возникновение гиперполяризации на мембране фоторецептора отличает его от других рецепторов, например слуховых, вестибулярных, где возбуждение связано с деполяризацией мембраны.
Гиперполяризационный рецепторный потенциал приводит к уменьшению скорости выделения медиатора - глутамата. Фоторецепторы сетчатки связаны с биполярной клеткой с помощью синапса. Глутамат приводит к гиперполяризации постсинаптической мембраны биполярной нервной клетки, которая также синаптически связана с ганглиозными клетками. В этих синапсах выделяется ацетилхолин, вызывающий деполяризацию постсинаптической мембраны ганглиозной клетки. В аксональном холмике этой клетки возникает ПД. Аксоны ганглиозных клеток образуют волокна зрительного нерва, по которым в мозг устремляются электрические импульсы.
Первый нейрон зрительного анализатора – это биполярная клетка, второй нейрон – ганглиозная. Зрительный нерв состоит из аксонов ганглиозных клеток. В области основания черепа часть волокон зрительного нерва переходит на противоположную сторону – зрительный перекрест. Остальные волокна вместе с перекрещенными аксонами второго зрительного нерва образуют зрительный тракт, волокна которого идут в подкорковые центры: латеральные коленчатые тела, верхние бугры четверохолмия, подушку зрительного бугра, супрахиазматическое ядро гипоталамуса и ядра глазодвигательного нерва. Аксоны клеток латерального коленчатого тела направляются в затылочную долю, к центральной части зрительного анализатора.
Уже на уровне сетчатки происходит определение таких сложных качеств светового сигнала, как освещенность, цвет, форма, движение сигнала. В подкорковых структурах анализатора зрительная информация подвергается дальнейшей, более сложной переработке. На этом уровне уже начинается взаимодействие обоих глаз.
Цветовое зрение – это способность зрительного анализатора реагировать на изменения светового диапазона между коротковолновым – фиолетовым цветом (длина волны от 400 нм) и длинноволновым - красным цветом (длина волны 700 нм) с формированием ощущения цвета. Все остальные цвета: синий, желтый, зеленый, оранжевый имеют промежуточные значения длины волны. Если смешать лучи всех цветов, то получим белый цвет.
Две теории цветового зрения: 1) трехкомпонентная теория цветоощущения Г. Гельмгольца: в сетчатке имеются 3 вида колбочек, отдельно воспринимающих красный, зеленый и сине-фиолетовый цвета. Различные сочетания возбуждения колбочек приводят к ощущению промежуточных цветов. Равномерное возбуждение всех трех видов колбочек дает ощущение белого цвета. Черный цвет ощущается в том случае, если колбочки не возбуждаются;
2) контрастная теория Э. Геринга: основана на существовании в колбочках 3 светочувствительных веществ (бело-черное, красно-зеленое, желто-синее), под влиянием одних световых лучей происходит распад этих веществ и возникает ощущение белого, красного, желтого цветов. Другие световые лучи синтезируют эти вещества и в результате получается ощущение черного, зеленого и синего цветов.
Различают следующие нарушения цветового зрения: 1) дальтонизм – слепота на красный и зеленый цвета, оттенки красного и зеленого цвета не различаются, сине-голубые лучи кажутся бесцветными; 2) дейтеранопия – слепота на красный и зеленый цвета. Нет отличий зеленого цвета от темно-красного и голубого; 3) тританопия – редко встречающаяся аномалия, не различаются синий и фиолетовый цвета; 4) ахромазия – полная цветовая слепота при поражении колбочкового аппарата сетчатки. Все цвета воспринимаются как оттенки серого.
Ощущение глубины пространства обеспечивается бинокулярным зрением.