
- •Формирование колебаний и сигналов
- •Глава 1. Устройства генерирования и формирования сигналов 7
- •Глава 2. Классификация, каскады, структурная схема и параметры радиопередатчиков 14
- •Глава 3. Общие принципы генерирования и усиления вч и свч колебаний 28
- •Глава 4. Основы теории вч генератора с внешним возбуждением 36
- •25.2. Параметры радиопередатчика 219
- •Глава 1. Устройства генерирования и формирования сигналов
- •1.1. Место и функции радиопередающих устройств
- •1.2. Истоки развития радиопередатчиков
- •1.3. Основные этапы развития техники и теории рПдУ
- •Глава 2. Классификация, каскады, структурная схема и параметры радиопередатчиков
- •2.1. Классификация рпду
- •2.2. Каскады и блоки рпду
- •2.3. Структурная схема рпду
- •2.4. Параметры радиопередатчика
- •2.5. Излучения радиопередатчика и проблема электромагнитной совместимости
- •2.6. Международное сотрудничество в области радиосвязи
- •Глава 3. Общие принципы генерирования и усиления вч и свч колебаний
- •3.1. Классификация и физический механизм работы вч и свч генераторов
- •3.2. Генератор на электровакуумном приборе
- •3.3. Генератор на биполярном транзисторе
- •3.4. Генератор на полевом транзисторе
- •3.5. Генератор на диоде
- •3.6. Клистронный генератор
- •3.7. Генератор на лампе бегущей волны
- •3.8. Время взаимодействия носителей заряда с электромагнитным полем
- •3.9. Принцип синхронизма и фазировки носителей заряда с электромагнитным полем
- •3.10. Мощность взаимодействия носителей заряда с электромагнитным полем
- •Вопрос 1. В чем состоит назначение генератора высокочастотных колебаний?
- •Глава 4. Основы теории вч генератора с внешним возбуждением
- •4.1. Обобщенная схема генератора с внешним возбуждением и ее анализ
- •4.2. Баланс мощностей в вч генераторе
- •4.3. Динамические характеристики вч генератора и максимально отдаваемая им мощность
- •4.4. Нагрузочные, амплитудные и частотные характеристики вч генератора
- •4.5. Согласование электронного прибора с источником возбуждения и нагрузкой и номинальный коэффициент усиления по мощности вч генератора
- •Глава 5. Ламповые высокочастотные генераторы с внешним возбуждением
- •5.1. Типовая электрическая схема лампового гвв
- •5.2. Статические характеристики триода и тетрода и их аппроксимация
- •5.3. Определение токов и напряжений в ламповом гвв
- •5.4. Динамическая характеристика и три режима работы вч лампового генератора
- •Глава 6. Ламповые высокочастотные генераторы с внешним возбуждением
- •6.1. Методика расчета лампового гвв
- •Программа расчета электрического режима работы вч лампового генератора
- •6.2. Нагрузочные характеристики и оптимальные режимы работы лампового генератора
- •6.3. Ламповый гвв с общей сеткой
- •6.4. Электрические схемы ламповых гвв
- •Глава 7. Транзисторные гвв
- •7.1. Типы мощных транзисторов, используемых в генераторах
- •7.2. Биполярные транзисторы
- •7.3. Полевые транзисторы
- •Глава 8. Режимы работы транзисторно гВв
- •8.1. Анализ работы и режимы работы транзисторного генератора с внешним возбуждением
- •8.2. Методика расчета вч генератора с биполярным транзистором
- •Программа расчета электрического режима работы вч транзисторного генератора
- •Глава 9. Сравнительный анализ генераторов
- •9.1. Ключевой режим работы вч транзисторного генератора
- •9.2. Сравнительный анализ трех типов генераторов с внешним возбуждением: лампового, с биполярным и полевым транзисторами
- •Глава 10 . Электрические цепи вч гвв
- •10.1. Назначение и классификация цепей
- •10.2. Согласующие цепи в узкополосных вч транзисторных генераторах
- •10.3. Согласование вч генератора с антенной
- •Глава 11. Электрические цепи широкополосных генераторов
- •11.1. Согласующие электрические цепи в широкополосных вч генераторах
- •11.2. Широкополосный транзисторный усилитель с согласующими цепями лестничного типа.
- •11.3. Широкополосный транзисторный усилитель
- •Глава 12. Свч транзисторные гвв
- •12.1. Метод анализа линейных свч устройств
- •12.2. Гибридно-интегральные свч устройства
- •12.3. Свч транзисторный усилитель
- •Глава 13 . Свч транзисторные гвв
- •13.1. Свч транзисторный генератор балансного типа
- •13.2. Линейный режим работы транзисторного свч генератора
- •13.3. Режим «перелива» мощности в транзисторных свч генераторах
- •Глава 14. Автогенераторы и стабилизация частоты автоколебаний
- •14.1. Назначение, классификация и принцип действия
- •14.2. Установившийся режим автоколебаний
- •14.3. Стабильность частоты аг
- •14.4. Кварцевые аг
- •Глава 15. Стабилизация дискретного множества частот
- •15.1. Назначение и параметры синтезатора частот
- •15.2. Автоматическая подстройка частоты
- •15.3. Частотная автоподстройка частоты
- •15.4. Фазовая автоподстройка частоты
- •15.5. Цифровой синтезатор частот
- •Глава 16. Диодные свч автогенераторы и усилители
- •16.1. Физические основы работы генераторных свч диодов
- •16.2. Свч диодные автогенераторы
- •16.3. Свч диодные генераторы с внешним возбуждением
- •Глава 17. Полупроводниковые умножители частоты
- •17.1. Назначение, принцип действия и основные параметры
- •17.2. Транзисторный умножитель частоты
- •17.3. Диодные умножители частоты
- •Глава 18. Суммирование мощностей сигналов свч генераторов
- •18.1. Способы суммирования мощностей сигналов
- •18.2. Суммирование мощностей сигналов с помощью многополюсной схемы
- •18.3. Суммирование мощностей сигналов с помощью фар
- •Глава 19. Амплитудная модуляция
- •19.1. Виды модуляции
- •19.2. Амплитудная модуляция
- •19.3. Амплитудная анодная и коллекторная модуляция
- •19.4. Амплитудная сеточная и базовая модуляция
- •Глава 20. Однополосная амплитудная модуляция
- •20.1. Нелинейные искажения сигнала при амплитудной модуляции
- •20.2. Однополосная модуляция
- •20.3. Структура обп сигнала
- •20.4. Усиление обп сигнала в двухканальном усилителе (схема Кана)
- •20.5. Формирование обп сигнала
- •Глава 21. Частотная и фазовая модуляция
- •21.1. Основные определения
- •21.3. Спектр сигнала при частотной и фазовой модуляции
- •21.4. Методы осуществления угловой модуляции
- •21.5. Частотный и фазовый модуляторы
- •21.6. Стабилизация частоты несущей при частотной модуляции
- •Глава 22. Частотная и фазовая модуляция дискретных сообщений
- •22.1. Частотная и фазовая модуляция дискретных сообщений
- •22.2. Фазовая манипуляция (фм)
- •22.3. Частотная телеграфия
- •Глава 23. Импульсная модуляция
- •23.1. Параметры и спектр сигнала при импульсной модуляции
- •23.2. Структурная схема и классификация импульсных модуляторов
- •23.3. Импульсный модулятор жесткого типа с емкостным накопительным элементом
- •23.4. Импульсный модулятор мягкого типа с искусственной линией
- •23.5. Внутриимпульсная частотная модуляция
- •Глава 24. Радиопередатчики вч диапазона различного назначения
- •24.1. Радиовещательные радиопередатчики
- •24.2. Телевизионные радиопередатчики
- •Глава 25. Рпду наземных радиотехнических систем по информационному обслуживанию производств рассредоточенного типа
- •25.1. Назначение, основные функции и структура системы.
- •25.2. Параметры радиопередатчика
- •Глава 26. Радиопередатчики свч диапазона. Глобальные космические радиоэлектронные системы
- •26.1. Типы передатчиков в космических системах радиосвязи
- •26.2. Околоземные орбиты спутников
- •26.3. Основные параметры космических систем радиосвязи
- •26.4. Многостанционный доступ
- •26.5. Примеры космических систем радиосвязи
- •Глава 27. Радиопередатчики свч диапазона. Передатчики радиолокационных станций. Передатчики сотовой системы радиосвязи
- •27.1. Передатчики радиолокационных станций
- •27.2. Радиопередатчик сотовой системы радиосвязи
- •Глава 28. Радиопередатчики оптического диапазона
- •28.1. Принцип действия и классификация лазеров
- •28.2. Назначение и структурная схема передатчика оптического диапазона
- •28.3. Модуляторы света
- •Глава 29. Измерение параметров, регулировка и испытания радиопередатчиков
- •29.1. Техника безопасности при работе с радиопередатчиками
- •29.2. Измерение параметров радиопередатчиков
- •29.3. Регулировка и испытания радиопередатчиков
- •Заключение
- •Перечень вопросов для итогового контроля
- •Перечень тем контрольных работ
- •Основные определения
- •Список литературы
Глава 21. Частотная и фазовая модуляция
21.1. Основные определения
Поскольку мгновенная частота (t) с фазой (t) сигнала связана соотношением:
, (21.1)
то частотная и фазовая модуляция взаимозависимы, их объединяют даже общим названием - угловая модуляция. При частотной модуляции (ЧМ) мгновенная частота сигнала изменяется по закону модулирующего сигнала, при фазовой (ФМ) - фаза. Поэтому при модуляции тестовым синусоидальным сигналом частотой :
uмод(t)=Uмодcost. (21.2)
При ЧМ и ФМ соответственно получим:
(t)=0+девcost, (21.3)
где дев=kUмод - девиация частоты;
(t)=0t+девcost+0, (21.4)
где дев=kUмод - девиация фазы.
Высокочастотное, несущее колебание:
. (21.5)
При ЧМ тональным сигналом (21.2) с учетом (21.3) несущее колебание (21.5) примет вид (рис. 21.1):
, (21.6)
где mч=/ - индекс частотной модуляции.
При ФМ тональным сигналом (21.2) с учетом (21.4) несущее колебание (21.5) принимает вид:
, (21.7)
где дев - девиация фазы, или индекс фазовой модуляции.
Рис. 21.1 Несущее колебание, модулированное ЧМ тональным сигналом
Из (21.6) и (21.7) следует, что при частоте модулирующего сигнала =const отличить ЧМ от ФМ не представляется возможным. Это различие можно обнаружить только при изменении частоты . При ЧМ согласно (21.6) девиация частоты дев=const при изменении частоты , а девиация фазы сигнала меняется по закону дев=дев/.
При ФМ согласно (21.7) амплитуда колебания фазы сигнала дев=const, а мгновенная частота сигнала меняется по закону
, (21.8)
следовательно, девиация частоты пропорциональна частоте модулирующего сигнала дев=дев/. Данное различие между ЧМ и ФМ иллюстрируется с помощью графиков, построенных на рис. 21.2.
Рис. 21.2. Различие между ЧМ и ФМ
Таким образом при ЧМ и ФМ меняется как мгновенная частота, так и фаза модулируемого ВЧ сигнала. Основные параметры, характеризующие эти виды модуляции - девиация частоты дев и девиация фазы дев, - по-разному зависят от частоты модулирующего сигнала .
21.3. Спектр сигнала при частотной и фазовой модуляции
Представим выражение для ЧМ сигнала (21.6) в виде суммы двух слагаемых: u(t)=U0 cos(mчsint)cos0t–U0sin(mчsint)sin0t. (21.9)
Разложив периодические функции в (21.9) в ряд Фурье, имеем:
u(t)=U0 J0(mч)cos0t+U0 J1(mч)[cos(0+)t–cos(0–)t]+
+U0 J2(mч)[cos(0+2)t–cos(0–2)t]+ (21.10)
+U0 J3(mч)[cos(0+3)t–cos(0–3)t]+…,
где Jn(mч) - бесселевая функция 1-го рода n-го порядка от аргумента mч; n - целое число.
Пакет программ Mathcad представляет возможность путем обращения к функции J0, J1, Jn вычислить значения бесселевой функции 1-го рода n-го порядка при любом значении аргумента mч.
Согласно (21.10) при ЧМ спектр высокочастотного сигнала при тональном модулирующем сигнале частотой имеет бесконечное число спектральных составляющих, расположенных симметрично относительно частоты 0 через интервалы, равные . Частоты этих спектральных составляющих равны 0±n, а амплитуды - U0Jn(mч). Аналогичный результат получается и при фазовой модуляции с заменой параметра mч на дев. С помощью приведенных графиков можно построить спектр ЧМ и ФМ сигнала при заданном значении mч=х или дев=х. В качестве примера такие спектрограммы при mч=5 и mч=2,4 приведены на рис. 21.3.
Рис. 21.3 Спектр ЧМ и ФМ сигнала при заданном значении mч=5 и mч=2,4
Следует
заметить, что спектральная составляющая
с частотой 0,
и несущая с частотой 0
- разные понятия. Так, при mч=2,4
спектральная составляющая с частотой
0
равна 0, но это не означает отсутствие
несущей в сигнале. Теоретически спектр
ЧМ сигнала безграничен. Однако, как
показывает анализ, большая часть энергии
ЧМ сигнала сосредоточена в полосе
,
(21.11)
где F - высшая частота в спектре модулирующего сигнала.
Именно на эту величину и следует рассчитывать полосы пропускания ВЧ трактов радиопередатчиков и радиоприемников. При mч<<1 ширина спектра ЧМ сигнала: fcп=2F. ЧМ с индексом mч<1 является узкополосной, с индексом mч>2 - 3 - широкополосной. Преимущества ЧМ в полной мере реализуются при mч>1.