
- •Формирование колебаний и сигналов
- •Глава 1. Устройства генерирования и формирования сигналов 7
- •Глава 2. Классификация, каскады, структурная схема и параметры радиопередатчиков 14
- •Глава 3. Общие принципы генерирования и усиления вч и свч колебаний 28
- •Глава 4. Основы теории вч генератора с внешним возбуждением 36
- •25.2. Параметры радиопередатчика 219
- •Глава 1. Устройства генерирования и формирования сигналов
- •1.1. Место и функции радиопередающих устройств
- •1.2. Истоки развития радиопередатчиков
- •1.3. Основные этапы развития техники и теории рПдУ
- •Глава 2. Классификация, каскады, структурная схема и параметры радиопередатчиков
- •2.1. Классификация рпду
- •2.2. Каскады и блоки рпду
- •2.3. Структурная схема рпду
- •2.4. Параметры радиопередатчика
- •2.5. Излучения радиопередатчика и проблема электромагнитной совместимости
- •2.6. Международное сотрудничество в области радиосвязи
- •Глава 3. Общие принципы генерирования и усиления вч и свч колебаний
- •3.1. Классификация и физический механизм работы вч и свч генераторов
- •3.2. Генератор на электровакуумном приборе
- •3.3. Генератор на биполярном транзисторе
- •3.4. Генератор на полевом транзисторе
- •3.5. Генератор на диоде
- •3.6. Клистронный генератор
- •3.7. Генератор на лампе бегущей волны
- •3.8. Время взаимодействия носителей заряда с электромагнитным полем
- •3.9. Принцип синхронизма и фазировки носителей заряда с электромагнитным полем
- •3.10. Мощность взаимодействия носителей заряда с электромагнитным полем
- •Вопрос 1. В чем состоит назначение генератора высокочастотных колебаний?
- •Глава 4. Основы теории вч генератора с внешним возбуждением
- •4.1. Обобщенная схема генератора с внешним возбуждением и ее анализ
- •4.2. Баланс мощностей в вч генераторе
- •4.3. Динамические характеристики вч генератора и максимально отдаваемая им мощность
- •4.4. Нагрузочные, амплитудные и частотные характеристики вч генератора
- •4.5. Согласование электронного прибора с источником возбуждения и нагрузкой и номинальный коэффициент усиления по мощности вч генератора
- •Глава 5. Ламповые высокочастотные генераторы с внешним возбуждением
- •5.1. Типовая электрическая схема лампового гвв
- •5.2. Статические характеристики триода и тетрода и их аппроксимация
- •5.3. Определение токов и напряжений в ламповом гвв
- •5.4. Динамическая характеристика и три режима работы вч лампового генератора
- •Глава 6. Ламповые высокочастотные генераторы с внешним возбуждением
- •6.1. Методика расчета лампового гвв
- •Программа расчета электрического режима работы вч лампового генератора
- •6.2. Нагрузочные характеристики и оптимальные режимы работы лампового генератора
- •6.3. Ламповый гвв с общей сеткой
- •6.4. Электрические схемы ламповых гвв
- •Глава 7. Транзисторные гвв
- •7.1. Типы мощных транзисторов, используемых в генераторах
- •7.2. Биполярные транзисторы
- •7.3. Полевые транзисторы
- •Глава 8. Режимы работы транзисторно гВв
- •8.1. Анализ работы и режимы работы транзисторного генератора с внешним возбуждением
- •8.2. Методика расчета вч генератора с биполярным транзистором
- •Программа расчета электрического режима работы вч транзисторного генератора
- •Глава 9. Сравнительный анализ генераторов
- •9.1. Ключевой режим работы вч транзисторного генератора
- •9.2. Сравнительный анализ трех типов генераторов с внешним возбуждением: лампового, с биполярным и полевым транзисторами
- •Глава 10 . Электрические цепи вч гвв
- •10.1. Назначение и классификация цепей
- •10.2. Согласующие цепи в узкополосных вч транзисторных генераторах
- •10.3. Согласование вч генератора с антенной
- •Глава 11. Электрические цепи широкополосных генераторов
- •11.1. Согласующие электрические цепи в широкополосных вч генераторах
- •11.2. Широкополосный транзисторный усилитель с согласующими цепями лестничного типа.
- •11.3. Широкополосный транзисторный усилитель
- •Глава 12. Свч транзисторные гвв
- •12.1. Метод анализа линейных свч устройств
- •12.2. Гибридно-интегральные свч устройства
- •12.3. Свч транзисторный усилитель
- •Глава 13 . Свч транзисторные гвв
- •13.1. Свч транзисторный генератор балансного типа
- •13.2. Линейный режим работы транзисторного свч генератора
- •13.3. Режим «перелива» мощности в транзисторных свч генераторах
- •Глава 14. Автогенераторы и стабилизация частоты автоколебаний
- •14.1. Назначение, классификация и принцип действия
- •14.2. Установившийся режим автоколебаний
- •14.3. Стабильность частоты аг
- •14.4. Кварцевые аг
- •Глава 15. Стабилизация дискретного множества частот
- •15.1. Назначение и параметры синтезатора частот
- •15.2. Автоматическая подстройка частоты
- •15.3. Частотная автоподстройка частоты
- •15.4. Фазовая автоподстройка частоты
- •15.5. Цифровой синтезатор частот
- •Глава 16. Диодные свч автогенераторы и усилители
- •16.1. Физические основы работы генераторных свч диодов
- •16.2. Свч диодные автогенераторы
- •16.3. Свч диодные генераторы с внешним возбуждением
- •Глава 17. Полупроводниковые умножители частоты
- •17.1. Назначение, принцип действия и основные параметры
- •17.2. Транзисторный умножитель частоты
- •17.3. Диодные умножители частоты
- •Глава 18. Суммирование мощностей сигналов свч генераторов
- •18.1. Способы суммирования мощностей сигналов
- •18.2. Суммирование мощностей сигналов с помощью многополюсной схемы
- •18.3. Суммирование мощностей сигналов с помощью фар
- •Глава 19. Амплитудная модуляция
- •19.1. Виды модуляции
- •19.2. Амплитудная модуляция
- •19.3. Амплитудная анодная и коллекторная модуляция
- •19.4. Амплитудная сеточная и базовая модуляция
- •Глава 20. Однополосная амплитудная модуляция
- •20.1. Нелинейные искажения сигнала при амплитудной модуляции
- •20.2. Однополосная модуляция
- •20.3. Структура обп сигнала
- •20.4. Усиление обп сигнала в двухканальном усилителе (схема Кана)
- •20.5. Формирование обп сигнала
- •Глава 21. Частотная и фазовая модуляция
- •21.1. Основные определения
- •21.3. Спектр сигнала при частотной и фазовой модуляции
- •21.4. Методы осуществления угловой модуляции
- •21.5. Частотный и фазовый модуляторы
- •21.6. Стабилизация частоты несущей при частотной модуляции
- •Глава 22. Частотная и фазовая модуляция дискретных сообщений
- •22.1. Частотная и фазовая модуляция дискретных сообщений
- •22.2. Фазовая манипуляция (фм)
- •22.3. Частотная телеграфия
- •Глава 23. Импульсная модуляция
- •23.1. Параметры и спектр сигнала при импульсной модуляции
- •23.2. Структурная схема и классификация импульсных модуляторов
- •23.3. Импульсный модулятор жесткого типа с емкостным накопительным элементом
- •23.4. Импульсный модулятор мягкого типа с искусственной линией
- •23.5. Внутриимпульсная частотная модуляция
- •Глава 24. Радиопередатчики вч диапазона различного назначения
- •24.1. Радиовещательные радиопередатчики
- •24.2. Телевизионные радиопередатчики
- •Глава 25. Рпду наземных радиотехнических систем по информационному обслуживанию производств рассредоточенного типа
- •25.1. Назначение, основные функции и структура системы.
- •25.2. Параметры радиопередатчика
- •Глава 26. Радиопередатчики свч диапазона. Глобальные космические радиоэлектронные системы
- •26.1. Типы передатчиков в космических системах радиосвязи
- •26.2. Околоземные орбиты спутников
- •26.3. Основные параметры космических систем радиосвязи
- •26.4. Многостанционный доступ
- •26.5. Примеры космических систем радиосвязи
- •Глава 27. Радиопередатчики свч диапазона. Передатчики радиолокационных станций. Передатчики сотовой системы радиосвязи
- •27.1. Передатчики радиолокационных станций
- •27.2. Радиопередатчик сотовой системы радиосвязи
- •Глава 28. Радиопередатчики оптического диапазона
- •28.1. Принцип действия и классификация лазеров
- •28.2. Назначение и структурная схема передатчика оптического диапазона
- •28.3. Модуляторы света
- •Глава 29. Измерение параметров, регулировка и испытания радиопередатчиков
- •29.1. Техника безопасности при работе с радиопередатчиками
- •29.2. Измерение параметров радиопередатчиков
- •29.3. Регулировка и испытания радиопередатчиков
- •Заключение
- •Перечень вопросов для итогового контроля
- •Перечень тем контрольных работ
- •Основные определения
- •Список литературы
Вопрос 1. В чем состоит назначение генератора высокочастотных колебаний?
Чем отличается генератор с внешним возбуждением от автогенератора?
Чем отличаются друг от друга разные типы электронных приборов?
В чем состоит принцип работы генератора с биполярным и полевым транзистором?
В чем состоит принцип работы триодного генератора?
В чем состоит принцип работы клистронного генератора?
В чем состоит принцип работы генератора на лампе бегущей волны?
В чем состоит принцип синхронизма?
В чем состоит принцип фазировки?
9. Что такое время и мощность взаимодействия?
10. Как определяются активная и реактивная мощности взаимодействия?
11. Как определяется КПД генератора?
Методические рекомендации.
Изучив материал главы, ответьте на вопросы. При возникновении трудностей обратитесь к материалам для закрепления знаний в конце пособия.
Для углубленного изучения воспользуйтесь литературой:
основной: 1 – 2; дополнительной: 4 – 6 и повторите основные определения, приведенные в конце пособия.
Глава 4. Основы теории вч генератора с внешним возбуждением
4.1. Обобщенная схема генератора с внешним возбуждением и ее анализ
Большое число разнообразных схем ВЧ генераторов с внешним возбуждением, являются частным случаем обобщенной структурной схемы (рис. 4.1,а), состоящей из трех, каскадно-включенных, четырехполюсников (ЧП) - входной и выходной согласующих электрических цепей и электронного прибора - транзистора или лампы.
Рис. 4.1. Обобщенная схема ВЧ генератора с внешним возбуждением
Назначение
электрических цепей состоит в согласовании
входного и выходного сопротивлений
электронного прибора соответственно
с источником возбуждения и нагрузкой
и в фильтрации высших гармоник сигнала.
Электронный прибор может быть представлен
в виде генератора тока
,
имеющего внутреннюю проводимость
входного
и выходного
,
сопротивлений (рис. 4.1,б). Все эти элементы
являются нелинейными и частотно-зависимыми.
Конечная цель анализа работы ВЧ генератора
(см. рис. 4.1,а) при подаче на его вход
одночастотного сигнала
состоит: в определении его энергетических
параметров - выходной колебательной
мощности ВЧ сигнала, поступающего в
нагрузку,
;
мощности потребления по постоянному
току от источника питания
;
коэффициента полезного действия (КПД)
,
коэффициента усиления по мощности
,
где
- мощность входного источника сигнала;
определение
условий оптимального режима работы ВЧ
генератора согласно определенному
критерию. Такими критериями могут
являться: максимум колебательной
мощности в нагрузке
максимальный КПД
,
максимальный коэффициент усиления по
мощности
,
минимум искажений, вносимых усилителем
в сигнал, максимальная ширина полосы
пропускания;
расчете и построении различных характеристик генератора: динамической, нагрузочной, амплитудной, фазоамплитудной, амплитудно-частотной, фазочастотной в одночастотном режиме работы. Определение данных характеристик дается ниже. Дополнительный анализ работы ВЧ генератора может проводиться при усилении модулированных и сложных ВЧ сигналов, например многочастотных. Перечисленные параметры и характеристики ВЧ генератора можно найти с помощью метода гармонической линеаризации (рис. 4.2).
Рис. 4.2. Принцип метода гармонической линеаризации
Электронный прибор и ВЧ генератор в целом являются нелинейными устройствами. В частности, при подаче на вход такого прибора синусоидального напряжения (рис. 4.2,а) сигнал на его выходе искажается (рис. 4.2,б). Согласно разложению функции в ряд Фурье (4.5) сигнал, приведенный на рис. 4.2,б, можно представить в виде суммы постоянной составляющей и нескольких гармоник (рис. 4.2,в). Из этой «смеси» с помощью фильтра можно выделить только 1-ю гармонику сигнала. Именно такую функцию и выполняет выходная согласующая цепь в схеме ВЧ генератора (см. рис. 4.1,а). Поэтому напряжение на нагрузке генератора снова приобретает синусоидальную форму (рис. 4.2,г).
Именно в фильтрации несинусоидального сигнала, выделении из него 1-й гармоники сигнала и преобразовании его вновь в синусоидальный сигнал и состоит метод гармонической линеаризации, лежащий в основе анализа ВЧ генератора. Сам анализ включает в себя:
- определение с помощью ВАХ электронного прибора формы тока на его выходе при подаче на вход синусоидального сигнала;
- разложение в ряд Фурье согласно (4.5) полученной несинусоидальной зависимости для тока эквивалентного генератора электронного прибора (см. рис. 4.1,б);
-определение напряжения на выходе электронного прибора; определение выходной мощности 1-й гармоники поступающей в нагрузку;
- определение потребляемой мощности от источника постоянного тока и КПД генератора;
- анализ входной цепи ВЧ генератора, определение мощности входного сигнала , и коэффициента усиления генератора по мощности ,
- выбор схемы и расчет выходной и входной согласующих электрических цепей ВЧ генератора (см. рис. 4.1,а).