
- •28!!!!!!!!!!!!!!1. Основные свойства кристаллических веществ. Пространственная решетка, ее параметры. Сингонии
- •2. Основные законы геометрической кристаллографии
- •3. Типы связей в кристаллических решетках, примеры минералов
- •4. Понятие и типы изоморфизма, примеры
- •5. Полиморфизм, примеры
- •6. 7. Понятие индикатрисы. Свойства индикатрисы одноосных кристаллов, двухосных кристаллов
- •8. Типы плотнейших упаковок кристаллических решеток минералов
- •9. Типы упаковок материальных частиц кристаллических решеток минералов
- •10. Рентгеностукртурное изучение структуры минералов, формула Брэггов-Вульфа
- •12. Минералы гидротерм
- •13. Минералы магматических пород
- •14. Цепочечные силикаты и алюмосиликаты
- •15. Каркасные силикаты
- •16. Поясные силикаты и алюмосиликаты
- •17. Листовые силикаты и алюмосиликаты
- •18. Островные силикаты
- •20. Минералы метаморфических пород. Правило фаз Гиббса
- •21. Минералы остаточных пород
- •22. Минералы осадочных пород
- •23. Формы нахождения минералов в природе
- •25. Кристаллизация изоморфных смесей магматического расплава
- •26. 29. Понятие о магматическом расплаве и магме. Происхождение гранитной и базальтовой магм. Генезис магматических расплавов основного и кислого состава
- •27. Кристаллизационная дифференциация магматического расплава
- •28. Ликвационная дифференциация магматического расплава
- •30. Термобарические обстановки кристаллизации магмы. Кристаллизация эвтектических смесей
- •31. Магматические породы океанических областей, их отражение в геофизических полях
- •32. Магматические породы активных окраин, их отражение в геофизических полях
- •33. Магматические формации пассивных окраин, их отражение в геофизических полях
- •34. Строение земной коры, магматические формации континентов и их отражение в геофизических полях
- •35. Минеральный, химический и нормативный состав пород различного состава
- •36. Эффузивные магматические породы, классификация, состав, строение, особенности образования
- •37. Текстуры, структуры, формы залегания магматических пород
- •42. Основные факторы и типы метаморфизма. Минеральный состав, текстуры и стуктуры метаморфических пород
- •43. Офиолиты, состав, происхождение, отражение в гравимагнитных полях
- •44. Фации и породы регионального метаморфизма
- •45. Термальный (контактный) метаморфизм, фации, породы, зональное строение скарнов
- •46. Ультраметаморфизм, анатексис, палигенез. Мигматиты и анатектиты, их отражение в геофизических полях
- •47. Метаморфические термобарические серии, их критические минеральные ассоциации
- •48. Импактный (ударный) метаморфизм
- •49. Схема колебаний света в система поляризатор-шлиф-анализатор
2. Основные законы геометрической кристаллографии
1.Закон прямолинейных рёбер и плоских граней. При условиях, благоприятных для роста кристаллов, они вырастают с прямыми рёбрами и плоскими гранями.
2.Закон постоянства углов Стено. Число, форма граней для кристаллов одного и того же вещества могут меняться, но углы между соответствующими гранями строго постоянны.
3.Закон целых и простых чисел ГАЮИ. Двойные отношения отрезков, отсекаемых двумя гранями на трёх взаимно пересекающихся рёбрах кристалла есть отношение простых и целых чисел.
4) Закон зон, связывает математической зависимостью положение граней и ребер кристалла, составляющих одну зону (зоной, или поясом в кристаллографии , называется совокупность, или система граней со взаимопараллельными ребрами). Закон зон дает возможность вычислять символы ребер кристалла из индексов смежных граней, входящих в состав зоны.
Для описания симметрии многограниников и кристаллических решеток в кристаллографии установлена следующая иерархия терминов:
3 Категории сингонии
7 Сингоний
Элементы симметрии - это вспомогательные геометрические образы (плоскости, прямые линии, точки), с помощью которых обнаруживается симметрия фигур.
3. Типы связей в кристаллических решетках, примеры минералов
Кристаллические решетки, состоящие из ионов, называются ионными. Их образуют вещества с ионной связью. Примером может служит кристалл хлорида натрия(галит), в котором, каждый ион натрия окружен шестью хлорид-ионами, а каждый хлорид-ион - шестью ионами натрия. Такому расположению соответствует наиболее плотная упаковка, если ионы представить в виде шаров, размещенных в кристалле .
Связи между ионами в таком кристалле весьма прочны. Поэтому вещества с ионной решеткой обладают сравнительно высокой твердостью. Они тугоплавки и малолетучи.
Плавление ионных кристаллов приводит к нарушению геометрически правильной ориентации ионов относительно друг друга и уменьшению прочности связи между ними. Поэтому расплавы их проводят электрический ток. Ионные соединения, как правило, легко растворяются в жидкостях, состоящих из полярных молекул, например в воде.
Кристаллические решетки, в узлах которых находятся отдельные атомы, называются атомными. Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером может служить алмаз - одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. В решетке алмаза, как и в решетке хлорида натрия, молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую молекулу. Атомная кристаллическая решетка характерна для твердого бора, кремния, германия и соединений некоторых элементов с углеродом и кремнием.
Кристаллические решетки, состоящие из молекул (полярных и неполярных), называются молекулярными.
Молекулы в таких решетках соединены между собой сравнительно слабыми межмолекулярными силами. Поэтому вещества с молекулярной решеткой имеют малую твердость и низкие температуры плавления, нерастворимы или малорастворимы в воде, их растворы почти не проводят электрический ток. Число неорганических веществ с молекулярной решеткой невелико.
Примерами их являются лед, твердый оксид углерода (IV) ("сухой лед"), твердые галогеноводороды, твердые простые вещества, образованные одно- (благородные газы), двух- (F2, Сl2),трех- (О3), четырех- (Р4), восьми- (S8) атомными молекулами. . Большинство кристаллических органических соединений имеют молекулярную решетку.