
- •Роль технологической подготовки производства в машиностроении.
- •Состав технологической подготовки производства.
- •Технологическая унификация.
- •11.Исхoдные дaнные для рaзрaбoтки техпрoцессoв
- •14. Методы машинного проектирования техпроцес
- •15. Состав и назначение сапр
- •17.Анализ размерных связей детали с использованием теории графов
- •18.Автоматизация выбора технологических баз
- •19.Синтез технологического маршрута в сапр технологических процессов единичного производства
- •20.Принципы классификации и группирования деталей в условиях серийного производства.
- •21. Принципы типизации технологических маршрутов
- •2. Выбор и кодирование конструктивно-технологических признаков деталей
- •23. Формирование обобщенного маршрута обработки деталей.
- •24. Алгоритм выбора технологического маршрута обработки деталей
- •26.Дифференциально-аналитический метод расчета припусков.
- •27. Интегрально-аналитический метод расчета припусков.
- •28. Алгоритм расчета припусков и межоперационных размеров.
- •29. Алгоритм выбора оборудования.
- •30. Алгоритм выбора схемы установки детали.
- •31. Алгоритм выбора установочно-зажимного приспособления.
- •32. Алгоритм выбора количества и последовательности переходов операций.
- •33. Автоматизация проектирования переходов.
- •34. Сапр операций выполняемых на токарных станках
- •35. Проектирование технологии обработке на револьверных станках
- •36. Сапр тп механической обработки для гибких производственных систем
- •37. Классификация сапр управляющих программ для станков с чпу.
- •38. Структура и состав сапр управляющих программ для станков с чпу.
- •39. Показатели уровня сапр уп с чпу.
- •40 Характеристики современных сапр уп с чпу
- •41 Оптимизация при проектировании технических объектов
- •42. Особенности построения структуры математических моделей технологических процессов
- •43 Виды критериев оптимальности при проектировании техпроцессов
- •44.Построение критериев максимальной производительности и наименьшего штучного времени
- •45.Построение критерия минимальной себестоимости
- •46. Построение обобщенных критериев оптимальности
- •47.Выбор технических ограничений при построении тех процесса
- •48. Виды оптимизации технологических процессов
- •49 Особенности структурной оптимизации технологических процессов
- •50. Постановка задачи выбора вида заготовки и методов ее изготовления
- •51. Алгоритм выбора оптимального метода получения заготовки.
- •52. Оптимизация выбора технологических операций
- •53. Алгоритм выбора оптимальной тех. Операции
- •54. Выбор рациональной системы станочных приспособлений
- •55. Алгоритм выбора рац. Системы станочных прис-ий.
- •56. Особенности параметрической оптимизации технологических процессов
- •57. Постановка задачи расчета оптимальных режимов обработки материалов резанием
53. Алгоритм выбора оптимальной тех. Операции
При разработке алгоритма решения задачи предварительно должна быть проанализирована и систематизирована вся исходная информация, включающая общие данные о детали (наименование, материал, твердость, число основных и вспомогательных поверхностей, масса, наличие термообработки и годовой объем выпуска) и об отдельных поверхностях (размеры, квалитет и шероховатость).
Алгоритм выбора оптимальных технологических операций представляет собой последовательное выполнение следующих процедур: ввод исходных данных, определение требуемого числа стадий обработки, выбор групп операций для каждой стадии обработки, выбор моделей станков, определение структуры операций, расчет штучного времени, определение себестоимости выполнения всех выбранных операций и выбор оптимальной технологической операции. Вывод результатов проектирования производится в виде технологических карт.
Вышеописанный, алгоритм представлен на рис. 9.2. Программа автоматизации выбора оптимальных технологических операций для различных стадий может быть выполнена в диалоговом режиме, что позволит наряду с автоматизированным решением задачи провести окончательную оценку результатов проектирования проектировщиком.
Рис. 9.2. Схема алгоритма выбора оптимальной операции
54. Выбор рациональной системы станочных приспособлений
Эффективность разрабатываемых технологических процессов зависит от правильного, технически и экономически обоснованного выбора различных видов оснастки. В настоящее время выбор режущих, вспомогательных, измерительных инструментов и станочных приспособлений в САПР ТП обычно выполняется на основе анализа таблиц выбора решений для конкретных видов технологической оснастки. При составлении таблиц разработчики САПР стремятся заложить в них наиболее рациональные решения, но эти таблицы, как правило, для конкретных условий не могут дать оптимальных решений. Ниже рассматривается один из методов структурной оптимизации ТП – выбор системы станочных приспособлений. От решения этой задачи в значительной степени зависят трудоемкость и себестоимость ТП механической обработки.
В машиностроении используется шесть основных систем станочных приспособлений (ССП):
универсально-сборные (УСП);
универсально-безналадочные (УБП);
сборно-разборные (СРП);
универсально-наладочные (УНП);
специализированные наладочные (СНП);
неразборные специальные (НСП).
Универсально-сборные приспособления эффективно применяются в условиях единичного и мелкосерийного производства. Их собирают из заранее приготовленных деталей и сборочных единиц высокой прочности и точности без последующей доработки. УСП нецелесообразно использовать в условиях серийного и крупносерийного производства, так как при больших партиях деталей происходит нарушение стыковых соединений и снижается стабильность прочностных параметров. Кроме того, основные элементы УСП подвержены коррозии и не могут длительное время находиться в эксплуатации.
Универсальные безналадочные приспособления представляют собой законченные механизмы многократного использования и применяются в условиях единичного и мелкосерийного производства при оснащении операции с малым подготовительным временем. Для подготовки УБП к работе требуются меньшие затраты времени по сравнению с другими видами оснастки, кроме специальной. Однако эти приспособления не имеют в составе комплекта стандартных установочных, направляющих и других элементов. Это ограничивает универсальность приспособлений, их технологические возможности, получаемую точность обработки.
Сборно-разборные приспособления отличаются более высокой, чем УСП, жесткостью и надежностью и применяются в основном в мелкосерийном и серийном производствах. СРП имеют высокие оперативность сборки, уровень механизации, точность и производительность и эффективно применяются на станках с ЧПУ. Однако из-за отсутствия унификации с другими видами переналаживаемой оснастки для УСП необходимо проектировать специальные детали и переходные элементы, что увеличивает время подготовки приспособлений к работе.
Универсально-наладочные приспособления состоят из базовой единицы и наладочной части. УНП применяются в мелкосерийном, серийном и крупносерийном производствах для групповой обработки деталей.
Специализированные наладочные приспособления состоят из специализированной, чаще всего механизированной, базовой сборочной единицы и специальных сменных наладок для установки близких по схемам базирования и закрепления обрабатываемых деталей. СНП применяются как в мелкосерийном, так и в крупносерийном производстве. К недостаткам УНП и СНП относится необходимость проектирования и изготовления специальных сменных наладок или наладочных регулируемых элементов.
Неразборные специальные приспособления представляют собой необратимые конструкции, не предназначенные для разборки с целью повторного использования. НСП применяют в основном в условиях крупносерийного и массового производства при редкой смене изделий.
Станочные приспособления предназначены для решения трех основных задач:
1) обеспечения заданной точности обработки;
2) повышения производительности;
3) облегчения труда рабочих.
Для выполнения операции ТП могут быть использованы приспособления, равноценные по точности, но различные по сложности, себестоимости и производительности. Выбор систем оснащения для нового изделия зависит и от того, какими приспособлениями пользовался завод ранее и на какую серийность осваиваемых машин он может рассчитывать в дальнейшем.