
- •Работа сталей при повторных нагрузках
- •Усталостная прочность стальных элементов
- •Влияние пределов изменения напряжений в течении цикла на усталостную прочность стальных элементов
- •Факторы влияющие на усталостную прочность стальных елеметов
- •Выбор сталей для сейсмостойких конструкций
- •Работа стыковых сварных соединений при повторных нагрузках
- •Работа сварных соединений с угловыми швами при повторных нагрузках
- •Работа болтовых соединений при повторных нагрузках
- •Работа алюминиевых сплавов при повторных нагрузках
- •Динамическая прочность стали и соединений при расчете на сейсмическое воздействие
- •Основные понятия сейсмичность и сейсмостойкость
- •Нормативная база сейсмостойкого строительства
- •Определение расчетной сейсмичности площадки строительства
- •Общие принципы компоновки здания в сейсмоопасных районах
- •Методы расчета зданий на сейсмические воздействия. Область применения
- •Выбор динамической расчетной схемы здания
- •Определение горизонтальной составляющей сейсмического воздействия со спектрального метода расчета
- •Определение вертикальной составляющей сейсмического воздействия со спектрального метода расчета
- •Учет крутильной сейсмической нагрузки (сейсмического момента) при расчете зданий
- •Учет высших форм колебаний при расчете здания на сейсмические воздействия
- •Распределение сейсмических нагрузок на несущие конструкции
- •Условия прочности и устойчивости элементов на действие особого рсу
- •Особенности проектирования высотных зданий со стальным каркасом в сейсмическом районе
- •Основные конструктивные схемы сейсмостойких стальных каркасов высотных зданий
- •Конструкции узлов сопряжений ригеля с колонной сейсмостойких рамных стальных каркасов высотных зданий
- •Конструкции баз колонн сейсмостойких рамных стальных каркасов высотных зданий
- •1 Вариант
- •2 Вариант
- •Конструкции сейсмопоглотителей сейсмостойких связевых стальных каркасов высотных зданий
- •Компоновка конструктивной схемы стального каркаса одноэтажного промышленного здания в сейсмоопасном районе
- •Компоновка связей по покрытию одноэтажного промышленного здания со стальным каркасом в сейсмоопасном районе
- •Компоновка вертикальных связей по колонам одноэтажного промышленного здания со стальным каркасом в сейсмоопасном районе
- •Особенности конструктивного решения покрытий одноэтажного промышленного здания со стальным каркасом в сейсмоопасном районе
- •Особенности конструктивного решения стенового ограждения одноэтажного промышленного здания со стальным каркасом в сейсмоопасном районе
- •Расчет стального каркаса одноэтажного промышленного здания на горизонтальные сейсмические воздействия в поперечном направлении
- •Расчет стального каркаса одноэтажного промышленного здания на горизонтальные сейсмические воздействия в продольном направлении
- •Расчет связей по покрытию одноэтажного промышленного здания со стальным каркасом на сейсмические воздействия
- •Расчет подкраново-тормозной конструкции одноэтажного промышленного здания со стальным каркасом
- •Расчет стропильных конструкций одноэтажного промышленного здания со стальным каркасом
- •Пути повышения сейсмостойкости одноэтажного промышленного здания со стальным каркасом.
Работа сталей при повторных нагрузках
При работе материала в упругой стадии повторное загружение не отражается на работе материала, поскольку упругие деформации обратимы.
При работе материала в упругопластической стадии повторная нагрузка ведет к увеличению пластических деформаций (рис. 2.22) в результате необратимых искажений структуры металла предыдущим нагружением и увеличением числа дислокаций. При достаточно большом перерыве (отдыхе) упругие свойства материала восстанавливаются и достигают пределов предыдущего цикла (рис. 2.22,б). Это повышение упругих свойств называется наклепом. Наклеп связан со старением и искажением атомной решетки кристаллов и закреплением ее в новом деформационном положении. При повторных нагружениях в пределах наклепа материал работает как упругий, но полное удлинение уменьшается в результате необратимых остаточных деформаций, полученных при первых нагружениях, т. е. металл становится как бы более жестким.
Повышение прочности благодаря наклепу используется в алюминиевых сплавах и арматуре железобетонных конструкций; в стальных конструкциях оно не используется, поскольку наклепанная сталь получается более жесткой и склонной к хрупкому разрушению.
Усталостная прочность стальных элементов
При многократном непрерывном нагружении возникает явление усталости металла, выражающееся в понижении его прочности, приближающейся к некоторой величине σвб, ниже которой разрушения стали не происходит (рис. 2.23, а). Эта величина называется пределом усталостной прочности (выносливости). Пределу выносливости стали отвечает примерно 10 млн. циклов нагрузки.
Однако уже при 2 млн. циклов усталостная прочность мало отличается от ее предела, поэтому испытания на выносливость применительно к стальным конструкциям обычно производятся на базе 2х106 циклов нагрузки.
Усталостное разрушение происходит вследствие накопления числа дислокаций при каждом загружении и концентрации их около стыков зерен с последующим скоплением в большие группы, что способствует разрыхлению металла в этом месте и, наконец, образованию трещины, которая, развиваясь, приводит к разрыву. При каждом нагружении деформации в поврежденном месте нарастают. Линии разгрузки не совпадают с линиями нагрузки, образуя петли гистерезиса (см. рис. 2.22, в, г). Площадь петли характеризует энергию, затраченную при каждом цикле нагрузки на образование новых несовершенств в атомной структуре и дислокаций. В начале образования трещины металл в этом месте как бы перетирается, образуя гладкие истертые поверхности, затем трещина быстро развивается и происходит отрыв изделия без перетирания. Таким образом, поверхность излома при усталостном разрушении имеет две характерные области - гладкую истертую при образовании трещины и зернистую при окончательном отрыве (рис. 2.24).
Влияние пределов изменения напряжений в течении цикла на усталостную прочность стальных элементов
П
омимо
числа циклов усталостная прочность
зависит от вида нагружения, который
характеризуется коэффициентом асимметрии
р = σмин/
σмакс (рис.
2.25).
Для
пластин из малоуглеродистой стали марки
СтЗ при однозначных циклах нагружения
(при р от 0 до +1, рис. 2.26, кривая 1) предел
выносливости равен пределу текучести,
при знакопеременных нагружениях он
снижается, достигая 140 МПа при р= -1,
составляя таким образом примерно 59
% предела текучести или 67 % расчетного
сопротивления. На предел выносливости
оказывает влияние и вид напряжения: при
преобладании сжатия он выше, чем при
преобладании растяжения (кривые 1 и 2,рис.
2.26).
Весьма большое влияние на предел выносливости оказывает концентрация напряжений; достаточно в полосе просверлить отверстие, как предел выносливости заметно снижается (рис. 2.26, кривая 3).Особенно резко снижается предел выносливости при большем значении коэффициента концентрации, например около начала флангового шва, где предел выносливости снижается при р = - 1 до 40 МПа (рис. 2.26, кривая 7), т. е. составляет всего 17 % предела текучести или 19 % расчетного сопротивления.
Низколегированная сталь повышенной прочности с пределом текучести 340 и 400 МПа в исходном состоянии (полоса без мест концентрации напряжений) имеет предел выносливости выше, чем у стали марки СтЗсп (рис. 2.26, кривая 4). При наличии мест с концентрацией напряжений предел выносливости этих сталей в процентном отношении снижается больше, чем у стали марки СтЗсп, и достигает по абсолютной величине таких же значений, как и у стали марки СтЗсп, при полном знакопеременном цикле и при больших значениях коэффициента концентрации (сравните кривые 7, 8 и 5, 6 на рис. 2.26).
Поэтому в конструкциях, воспринимающих переменные воздействия, не всегда выгодно применять стали повышенной прочности без принятия специальных мер.
Предел выносливости стали высокой прочности с пределом текучести 450-750 МПа мало отличается от предела выносливости сталей повышенной прочности. Поэтому применение таких сталей в конструкциях, в которых может проявиться усталость, по экономическим соображениям не всегда оправдано.
До недавнего времени считалось, что усталость может вызвать только очень большое число перемен нагрузки. Однако практика показывает, что усталость может проявиться и при не очень большом числе циклов нагрузки, но при достаточно больших напряжениях, т. е. будет так называемая малоцикловая усталость, например, частое наполнение и опорожнение резервуаров большой вместимости, понижение и снятие внутреннего давления в воздухонагревателях и т. п. При числе перемен нагрузок до 10000 поверхность излома напоминает обычный излом при однократном нагружении; при большем числе циклов излом имеет характерный вид усталостного разрушения (см. рис. 2.24).
При многократном непрерывном нагружении возникает явление усталости металла, выражающееся в понижении его прочности, приближающейся к некоторой величине σуст, ниже которой разрушения стали не происходит. Эта величина называется предел усталостной прочности (выносливости). (см. рис.).
Схема влияния величины напряжения на разрушение при динамических нагрузках:
Пределу выносливости стали отвечает примерно 10 млн. циклов нагрузки. Однако уже при 2 млн. циклов усталостная прочность мало отличается от ее предела, поэтому испытания на выносливость применительно к стальным конструкциям обычно произвдится на базе 2*106 циклов нагрузки. Усталостное разрушение происходит вследствие накопления числа дислокаций при каждом загружении и концентрации их около стыков зерен с последующим скоплением в большие группы, что способствует разрыхлению металла в этом месте и, наконец, образованию трещины. Трещина, развиваясь, приводит к разрыву. Текучесть металла приводит к сдвигу зерен относительно друг друга. Важно учитывать, что опасным считается состояние, когда напряжение достигает предела текучести многократно. Для сейсмостойкого строительства используются пластичные, однородные, спокойные стали, такие как Ст3 сп, 09Г2, 10Г2С, 15ХСНД, 10 ХСНД.