- •1.Общие сведения об электроэнергетических системах.
- •2. Сведения об энергетике рб и перспективах ее развития
- •3. Структурная технологическая схема получения ээ на кэс
- •5. Структурная технологическая схема получения ээ на аэс
- •6. Структурная технологическая схема получения ээ на гэс
- •7.Схемы первичных соединений электростанций и назначение эл оборудования в них
- •8.Воздействие электростанций на окружающую среду
- •9. Электрические сети и их классификация по способу заземления нейтралей. Напряжения электрических сетей.
- •10. Электрические cети с незаземленной (изолированной) нейтралью
- •11. Сети с компенсированными ( резонансно - заземленными) нейтралями
- •12. Сети с эффективно заземленными нейтралями
- •13. Сети с глухо-заземленными нейтралями
- •14. Материалы токоведущих частей электроустановок. Сопротивление проводников на переменном токе.
- •15. Явление поверхностного эффекта и эффекта близости
- •16. Конструкции токоведущих частей электроустановок. Токопроводы генераторов и трансформаторов.
- •17. Подвесные гибкие токопроводы
- •18. Открытые жесткие токопроводы
- •1 9. Закрытые токопроводы
- •20. Кабельные соединения. Силовые и контрольные кабели
- •2 1. Условия работы проводников и аппаратов при длительном протекании токов нагрузки
- •22. Нагрев неизолированных проводников при длительном протекании токов
- •23. Определение длительно допустимого тока нагрузки и номинального тока аппаратов
- •24.Определение постоянной времени нагрева проводников и аппаратов
- •25. Тепловой расчет проводников при длительном протекании тока
- •26. Расчет нагрева проводников ткз
- •27. Тепловой квадратичный импульс ткз
- •31. Общие сведения о выключателях высокого напряжения
- •32 Общие сведения о разъединителях, короткозамыкателях и отделаителях
- •33 Разъединители для внутренней установки
- •34 Разъединители для наружной установки
- •36 Высоковольтные плавкие предохранители. Назначение, принцип действия и характеристики
- •37 Высоковольтные плавкие предохранители с наполнителем. Предохранители типа пк.
- •38 Высоковольтные плавкие предохранители с автогазовым гашением. Предохранитель типа пвт.
- •39 Ограничители ударного тока. Принцип действия, конструкц., применение
- •40 Масляные выключатели. Принцип действия и конструкция серии….
- •41. Маломасляные выключатели
- •42. Воздушные выключатели. Конструкция и принцип действия выключателя ввб-110
- •43. Электромагнитные выключатели
- •44. Вакуумные выключатели
- •45. Автогазовые выключатели
- •46. Элегазовые выключатели
- •47. Синхронизированные выключатели
- •48. Выключатели нагрузки с гасительными устройствами газогенерирующего типа внпр
- •49 Выключатели нагрузки элегазовые внэ-ш-110
- •50 Вакуумные выключатели нагрузки внв-10/320
- •51 Приводы выключателей вн. Пружинные приводы
- •52 Электромагнитные приводы выключателей
- •5 3 Приводы выключателей вн. Пневмат. И пневмогидравлическ. Приводы
- •5 4. Приводы разъеденителей
43. Электромагнитные выключатели
Электромагнитные выключатели (ВЭМ-10) не требуют для своей работы масла, что делает их взрывопожаробезопасными, а высокая токоустойчивость контактов и дугогасительных камер обеспечивает большое мера включений в электроустановках с частыми коммутационными операциями. Дугогасительная система состоит из электромагнита и дугогасительной камеры. На П-образный магнитопровод электромагнита надета катушка электромагнитного дутья. Дугогасительная камера представляет собой пакет тонких керамических пластин с Л-образными вырезами и располагается среди полюсными наконечниками электромагнита, над контактами выключателя.
Пластины в пакете уложены в шахматном порядке и обладают высокой дугоустойчивостью и теплопроводностью, допуская температуру 2000 °С. По концам пакета в специальных керамических лотках закреплены медные электроды (рога), по которым движется дуга в процессе отключения выключателя. Она затягивается вверх по узким щелям между холодными керамическими пластинами, отдает теплоту, растягивается сообразно длине и гаснет. Дуга движется вверх в дугогасительную камеру под действием электродинамических сил и тепловых потоков. Катушка магнитного дутья имеет небольшое сопротивление и включается последовательно в электрическую цепь, через нее проходит полный ток отключаемой цепи. В результате между полюсными наконечниками электромагнита создается интенсивное магнитное поле, которое заставляет дугу ходить по медным рогам, так как на круг проводник с током (в том числе и на электрическую дугу), находящийся в магнитном поле, действует электродинамическая мощь, направление которой, как известно, определяется по правилу левой руки. Гашению дуги способствует также резкое снижение тока в электромагнитном выключателе из-за увеличения сопротивления дуги. век горения дуги при отключении токов короткого замыкания не превышает 0,02 с.
При отключении малого тока электродинамическая сила, действующая на дугу, небольшая. В этом случае передвижению дуги в щели дугогасительной камеры способствуют цилиндры воздушного дутья, закрепленные для подвижных контактах выключателя. При отключении выключателя поршни передвигаются в цилиндрах и выталкивают воздух между размыкающимися дугогасительными контактами (система принудительного дутья).
Контактная учение выключателя состоит из главных и дугогасительных контактов. Наконечники дугогасительных контактов выполнены из металла (кирита), обеспечивающего большой срок их службы. При включении выключателя сначала замыкаются дугогасительные контакты, а кроме шунтирующие их главные контакты. При отключении контакты размыкаются в обратном порядке. Таким образом защищаются от обгорания главные контакты.
\
44. Вакуумные выключатели
Электрическая прочность вакуума значительно выше прочности других сред, применяемых в выключателях. Объясняется это увеличением длины среднего свободного пробега электронов, атомов, ионов и молекул по мере уменьшения давления. В вакууме длина свободного пробега частиц превышает размеры вакуумной камеры. В этих условиях удары частиц о стенки камеры происходят значительно чаще, чем соударения между частицами. При столь высокой электрической прочности расстояние между контактами может быть очень малым (2 – 2,5 см), поэтому размеры камеры могут быть также относительно небольшими. Процесс восстановления электрической прочности промежутка между контактами при отключении тока протекает в вакууме значительно быстрее, чем в газах. В соответствии с теорией электропрочности газов, необходимые изоляционные качества вакуумного промежутка достигаются и при меньших уровнях вакуума. Это обеспечивает вакуумным камерам запасы электропрочности на весь срок эксплуатации (20-30 лет).
Типовая конструкция вакуумной дугогасительной камеры приведена на рисунке.
Конструкция
вакуумной камеры состоит из пары
контактов (4; 5), один из которых является
подвижным (5), заключенных в вакуумноплотную
оболочку, спаянную из керамических или
стеклянных изоляторов (3; 7), верхней и
нижней металлических крышек (2; 8) и
металлического экрана (6). Перемещение
подвижного контакта относительно
неподвижного обеспечивается путем
применения сильфона (9). Выводы камеры
(1; 10) служат для подключения ее к главной
токоведущей цепи выключателя.
Надо отметить, что для изготовления оболочки вакуумной камеры применяются только специальные вакуумноплотные, очищенные от растворенных газов металлы – медь и специальные сплавы, а также специальная керамика. Контакты вакуумной камеры изготавливаются из металлокерамической композиции , обеспечивающей высокую отключающую способность, износостойкость и препятствующей возникновению точек сваривания на поверхности контактов.
В момент, когда сила тяги якоря, создаваемая магнитным потоком, превосходит усилие пружины отключения 7, якорь 11 электромагнита вместе с тяговым изолятором 5 и подвижным контактом 3 вакуумной камеры начинает движение вверх, сжимая пружину отключения. При этом в катушке возникает двигательная противо-ЭДС, которая препятствует дальнейшему нарастанию тока, и даже несколько уменьшает его. При замыкании контактов вакуумной камеры, в магнитной системе остается зазор дополнительного поджатия. Скорость движения якоря резко падает, так как ему приходится преодолевать еще и усилие пружины дополнительного контактного поджатия 6. Однако под воздействием усилия, создаваемого магнитным потоком и инерцией, якорь 11 продолжает двигаться вверх, сжимая пружину отключения 7 и пружину 6 дополнительного контактного поджатия.
В момент замыкания магнитной системы якорь соприкасается с верхней крышкой привода 8 и останавливается. После окончания процесса включения ток катушки привода отключается. Выключатель остается во включенном положении за счет остаточной индукции, создаваемой кольцевым постоянным магнитом 10, который удерживает якорь 11 в притянутом к верхней крышке 8 положении без дополнительной токовой подпитки.
