Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Начерталка.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
245.25 Кб
Скачать

Вопрос 7

Взаимное расположение двух плоскостей.

   Плоскости могут совпадать, быть параллельными или пересекаться по прямой.

               Известны три варианта взаимного расположения прямой и плоскости:

  1. Прямая принадлежит плоскости.

  2. Прямая параллельна плоскости.

  3. Прямая пересекает плоскость.

Прямые линии, принадлежащие плоскости и занимающие частное положение по отношению к плоскостям проекций, называются главными линиями плоскости.

Очевидно, что если прямая не имеет двух общих точек с плоскостью, то она или параллельна плоскости, или пересекает ее.

Большое значение для задач начертательной геометрии имеет частный случай пересечения прямой и плоскости, когда прямая перпендикулярна плоскости.

Определение взаимного положения прямой и плоскости - позиционная задача, для  решения которой применяется метод вспомогательных секущих плоскостей.

Вот примеры

Во-первых, две прямые на плоскости могут совпадать.

Это возможно в том случае, когда прямые имеют по крайней мере две общие точки. Действительно, в силу аксиомы, озвученной в предыдущем пункте, через две точки проходит единственная прямая. Иными словами, если через две заданные точки проходят две прямые, то они совпадают.

Во-вторых, две прямые на плоскости могут пересекаться.

В этом случае прямые имеют одну общую точку, которую называют точкой пересечения прямых. Пересечение прямых обозначают символом « », к примеру, запись  означает, что прямые а и b пересекаются в точке М. Пересекающиеся прямые приводят нас к понятию угла между пересекающимися прямыми. Отдельно стоит рассмотреть расположение прямых на плоскости, когда угол между ними равен девяноста градусам. В этом случае прямые называются перпендикулярными (рекомендуем статью перпендикулярные прямые, перпендикулярность прямых). Если прямая a перпендикулярна прямой b, то можно использовать краткую запись  .

Прямая и плоскость называются параллельными, если они не имеют общих точек.

Если прямая a параллельна плоскости α, то пишут a || α.

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек (а ||  )

Признак параллельности прямой и плоскости.

Теорема. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.

Определение Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна каждой прямой, которая лежит в данной плоскости и проходит через точку пересечения.

Теорема 1 ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ. Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.

Теорема 2 1-ое СВОЙСТВО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ.  Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.

Теорема 3 2-ое СВОЙСТВО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ.  Две прямые, перпендикулярные одной и той же плоскости, параллельны.

Если прямая перпендикулярна каждой из двух пересекающихся прямых плоскости, то она перпендикулярна этой плоскости.

Теорема:

Если хотя бы одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то угол на эту плоскость проецируется в натуральную величину.

Следствие: если прямоугольная проекция угла, одна сторона которого параллельна плоскости проекций, - прямой угол, то проецируемый угол также прямой.

Свойства проекций прямого угла имеют важное значение при решении метрических задач на чертеже, таких, как построение взаимно перпендикулярных прямых и плоскостей определения расстояния между геометрическими фигурами и т.д.

Теорема о проецировании прямого угла. Если одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то при ортогональном проецировании прямой угол проецируется на эту плоскость в прямой же угол.