
- •1.Место контроля и диагностирования в системе эксплуатации.
- •2.Задачи системы контроля и диагностирования.
- •3.Условия по внедрению системы контроля и диагностирования ат.
- •4.Метод Байеса.
- •5.Метод минимального риска.
- •6.Метод эталонов.
- •7.Метод минимального расстояния до множества.
- •8.Метод разделения в пространстве признаков.
- •9.Логические методы.
- •10.Оценка материалов по их физико-механическим характеристикам.
- •Вопрос 11. Развитие трещин при работе конструкций ат
- •Вопрос 12. Механизм развития повреждаемости
- •Вопрос 13. Суммирование повреждений при длительном статическом нагружении
- •Вопрос 14. Механизм развития повреждаемости
- •Вопрос 15. Суммирование усталостных повреждений
- •Вопрос 16. Повреждаемость при термоусталости
- •Вопрос 17. Изнашивание при трении скольжения
- •Вопрос 18. Изнашивание при трении качения
- •Вопрос 19. Газоабразивное изнашивание
- •Вопрос 20. Процесс образования коррозии
- •21. Особенности коррозионной повреждаемости авиационных конструкций
- •22. Информационные основы технической диагностики
- •24. Задачи и структура систем сбора и обработки информации.
- •25. Задачи лаборатории диагностирования
- •26. Состав лаборатории надежности и диагностики.
- •27.Группа неразрушающих методов контроля и группа анализа масла.
- •28)Контроль технического состояния вс в полете Вопрос 1. Зависимость безопасности полета от контроля состояния ат
- •Вопрос 2. Общая структура бортового контроля
- •29)Диагностирование ат при то и ремонте Вопрос 1. Диагностирование ат при то
- •Вопрос 2. Диагностирование ат при ремонте
- •30) Виды неразрушающего контроля
- •31) Акустический вид нк
- •32)Визуально-оптический вид нк
- •Вопрос 33. Магнитный вид нк
- •Вопрос 34. Капиллярный вид нк
- •Вопрос 35. Вихретоковый вид нк
- •Вопрос 36. Лучевой вид нк
- •Вопрос 37. Методы течеискания
- •Вопрос 38. Другие виды неразрушающего контроля
Вопрос 13. Суммирование повреждений при длительном статическом нагружении
Существует
несколько теоретических гипотез,
описывающих зависимость скорости
пластической деформации
от напряжений
,
деформации
,
времени
и температуры
:
Гипотеза течения, описывающая процесс ползучести зависимостью
. Эта теория имеет некоторое подтверждение для высоких уровней надежности (рис.18, кривая 1).
Гипотеза линейного суммирования повреждений исходит из того, что существует зависимость
, отображающая старение в чистом виде. Гипотеза линейного суммирования повреждений довольно хорошо подтверждается экспериментом при слабом или медленном изменениях напряжений в элементах конструкции в процессе работы.
Гипотеза нелинейного суммирования повреждений предполагает, что существует зависимость
, которая устанавливает связь между напряжением , суммарной накопленной пластической деформацией и ее скоростью .
Существенным моментом в гипотезе нелинейного суммирования повреждений является так называемая наследственность или своеобразная память материала на остаточные деформации.
Вопрос 14. Механизм развития повреждаемости
Повреждение конструкции повторно-переменными нагрузками приводит к усталости их материала.
Усталость является сложным процессом накопления повреждений под действием повторно-переменных напряжений, приводящих к образованию трещин и разрушению конструкции. Возникновению магистральных усталостных трещин предшествуют микротрещины в местах концентрации дислокаций, плотность которых превышает критическую.
Усталостное, прогрессирующее во времени разрушение можно описать последовательностью случайных процессов:
накопление первичных повреждений (скопление дислокаций);
формирование микротрещин и слияния их в макротрещины;
распространение магистральной усталостной трещины;
статического долома.
Кинетика и механизм каждого из перечисленных процессов усталостного разрушения определяются комплексом внешних нагрузок, характером их изменения во времени и повреждаемостью самого материала.
Различают знакопеременность и повторяемость нагружения (рис.19). Большая часть АК работает при знакопеременном нагружении.
Рис.19. Типичные циклы повторно-переменного нагружения:
а – симметричный; б – пульсирующий; в – асимметричный знакопеременный;
г – асимметричный знакопостоянный
Опасность усталостного разрушения по сравнению с длительным статическим заключается:
– в более низком разрушающем напряжении (до половины статической прочности и ниже);
– в более резком влиянии на прочность конструктивных, технологических и коррозионных факторов.
Кривые усталости (кривые Велера) отражают зависимость усталостной долговечности от числа циклов N (рис.20). Они бывают двух типов: с выраженным горизонтальным участком (кривая 1) и монотонным снижением (кривая 2). Последнее характерно для многих сплавов и цветных металлов.
Рис.20. Кривые усталости металлов:
I – условный предел выносливости
Условным пределом выносливости считают наибольшее значение максимального напряжения цикла, не вызывающее разрушения практически при очень большом числе циклов. Склонность к образованию трещин у поврежденных повторно-переменными нагрузками элементов АК зависит (при фиксированном уровне напряжений) от макро- и микрогеометрии поверхности, от остаточной напряженности поверхности, от состояния макро- , микро- и субмикроструктуры материала. Существенного влияния на макро- и микрогеометрию поверхности элементов АК наработка оказать не может. Последние два фактора имеют прямое отношение к накоплению усталостных повреждений при работе. Процесс усталостной повреждаемости в целом поддается управлению. К управляющим факторам относят ряд конструктивных мер по увеличению поперечных сечений элементов, отстройку от резонансных частот колебаний, устранение конструктивных концентраторов напряжений. Положительно сказывается и совершенство технологического процесса изготовления.