
- •Задачи теории игр в экономике, финансах и бизнесе.
- •Антагонистические
- •Игры с природой
- •Неантагонистические
- •Основные понятия и определения антагонистических игр.
- •4. Максиминный и минимаксный принципы игроков. Показатели эффективности и неэффективности чистых стратегий.
- •5. Максимин и минимакс игры. Максиминные и минимаксные стратегии. Нижняя и верхняя цена игры в чистых стратегиях. Соотношение между ними.
- •Критерий решения игры в чистых стратегиях.
- •Доказательство утверждения .
- •Теорема об удовлетворительности игровой ситуации для игрока a.
- •Теорема об удовлетворительности игровой ситуации для игрока b
- •Равновесие в антагонистической игре.
- •Смешанные стратегии. Функция выигрыша и цена игры в смешанных стратегиях.
- •Теорема о существовании показателей эффективности и неэффективности смешанных стратегий в антагонистической игре.
- •Теорема о существовании нижней и верхней цен игры в смешанных стратегиях.
- •Теорема о соотношении нижней и верхней цен игры в чистых и смешанных стратегиях.
- •Основная теорема матричных игр Джона фон Неймана и седловая точка функции
- •Аналитическое решение игры 2×2 в смешанных стратегиях.
- •Рассмотрим игру 2х2.
- •Для того, чтобы их найти, воспользуемся теоремой об активных стратегиях.
- •Пусть игра задана матрицей
- •Д ля второго игрока
- •Геометрический метод нахождения цены игры 2×2 и оптимальных стратегий игрока a.
- •Геометрический метод нахождения цены игры 2×2 и оптимальных стратегий игрока b.
- •Геометрический метод нахождения цены игры 2×n и оптимальных стратегий игрока a.
- •Геометрический метод нахождения цены игры m×2 и оптимальных стратегий игрока b.
- •2)В общем случае схема решения игры 2xn или nx2 графическим методом состоит в следующем.
- •Доминирование смешанных стратегий для игрока a.
- •Доминирование смешанных стратегий для игрока b.
- •Решение матричной игры m×n сведением к задаче линейного программирования для игрока a.
- •Решение матричной игры m×n сведением к задаче линейного программирования для игрока b.
- •Основные понятия и определения теории игр с природой.
- •Игры с природой. Показатель благоприятности состояния природы. Риск игрока, принимающего решение. Матрица рисков. Принятие решений в условиях риска и неопределённости.
- •Критерий Байеса оптимальности чистых стратегий относительно выигрышей.
- •Критерий Байеса оптимальности чистых стратегий относительно рисков.
- •Критерий Лапласа оптимальности чистых стратегий относительно выигрышей.
- •Критерий Лапласа оптимальности чистых стратегий относительно рисков.
- •Критерий (крайнего пессимизма) Вальда оптимальности чистых стратегий.
- •Максимаксный критерий (крайнего оптимизма) оптимальности чистых стратегий.
- •Критерий пессимизма – оптимизма Гурвица оптимальности чистых стратегий относительно выигрышей.
- •Определение показателей оптимизма и пессимизма игрока, принимающего решения по критерию Гурвица относительно выигрышей.
- •Учёт выигрышей по критерию Гурвица крайним пессимистом, крайним оптимистом и нейтралом.
- •Вероятностная интерпретация коэффициентов критерия Гурвица.
- •Критерий Севиджа
- •Миниминный критерий.
- •Критерий пессимизма – оптимизма Гурвица оптимальности чистых стратегий относительно рисков.
- •Критерий Гермейера оптимальности чистых стратегий
- •Критерий Ходжа – Лемана оптимальности чистых стратегий относительно выигрышей.
- •Основные понятия и определения в теории неантагонистических (бескоалиционных) игр. Способы задания неантагонистической игры.
- •Стратегическая форма игры. Чистые и смешанные стратегии игроков в неантагонистических (бескоалиционных) играх. Доминирование стратегий.
- •Равновесие по Нэшу в чистых стратегиях.
- •Семейная пара принимает решение о месте куда они могут пойти в свободное время. Так он предлагает футбол, а она балет
- •Равновесие по Нэшу в смешанных стратегиях.
- •46. Аналитическое решение биматричных игр 2×2.
- •Рассмотрим случай, когда матрица [2x2]-не имеет седловой точки.
- •А цена игры (в смешанных стратегиях) V определяется формулой
- •Аналогичный анализ можно провести для второго игрока.
- •47. Геометрическое решение биматричных игр 2×2
- •48. Модель дуополии по Курно.
- •49. Модель дуополии по Бертрану.
- •50. Модель «Проблема общего».
- •51. Оптимальность по Парето в неантагонистических (бескоалиционных) играх.
- •52. Позиционная форма игры.
- •53. Понятие о конечных играх с совершенной информацией.
- •54. Стратегическая форма позиционной игры с совершенной информацией.
- •55. Равновесие по Нэшу в позиционной игре с совершенной информацией.
- •56. Обратная индукция и позиционные игры с совершенной информацией.
- •57. Модель дуополии по Штакельбергу.
- •58. Модель последовательного торга.
- •59. Модель «инвесторы и банк».
Определение показателей оптимизма и пессимизма игрока, принимающего решения по критерию Гурвица относительно выигрышей.
Коэффициент оптимизма λ выбирается между 0 и 1, при этом если коэффициент равен 1, то критерий Гурвица превращается в критерий Вальда (по пессимизму результата), если коэффициент равен 0, то в критерий Севиджа.
Число (1- λ) будет характеризовать меру пессимизма игрока А, поэтому в данной работе будем называть коэффициентом пессимизма. Таким образом коэффициенты оптимизма и пессимизма в сумме дают единицу. С увеличением меры ответственности коэффициент λ стремится к нулю: чем серьезнее последствия ошибочных решений, тем больше желание ЛПР перестраховаться. А чем ближе λ к нулю, тем ближе (1- λ) к единице, т.е. тем больше пессимизма. И наоборот. Заметим, что при коэффициенте λ=0,5 видно нейтральность игрока в оценивании ситуации при выборе стратегии.
λ1, λ2,…, λn – числовые коэффициенты количественно характеризующие субъективную оценку игрока А в играх с природой. Такое положение делает обобщенный критерий Гурвица в большей степени субъективным, чем объективным. На результат выбора данной стратегии могут влиять различные ситуации, при которых известны возможные выигрыши.
Существуют некоторые методы выбора данных коэффициентов. Так Лабскер предлагает математико-формализованный метод, для ограничения степени полного произвола субъективного выбора игрока А, который будет разобран ниже.
В.Б. Волгоградский предлагает иной подход к выбору коэффициентов, который состоит в том, что игрок А сначала субъективно определяет числовое значение показателя своего оптимизма λо [0,1], а затем в зависимости от этого значения определяет коэффициенты λj, j=1,2,…,n, по следующей формуле:
(5.1)
Матиматико-формализованный подход Лабскера выбора коэффициентов λ зависит от средних выигрышей и носит менее субъективный характер, чем модель, предложенная Волгоградским. Её суть заключается в следующем:
Рассматривается игра с природой размером mxn, в которой матрица А является матрицей выигрышей игрока А, матрица B – матрица ранжированных выигрышей. Считается, что все выигрыши положительные. Далее используется специальная формула в зависимости от ситуации (думаю формулу учить не надо):
(5.2)
Где λо – показатель оптимизма, λP – показатель пессимизма;
b – сумма всех выигрышей матрицы, b-1 необходимо для выведения среднего значения выигрышей j-го ранга;
- сумма
выигрышей bij
j-го
ранга; λ j = b j / b
– выражение коэффициентов λj
через выигрыши.
Учёт выигрышей по критерию Гурвица крайним пессимистом, крайним оптимистом и нейтралом.
Весь выигрыш Игрока зависит от того, какой коэффициент оптимизма он выберет. Он может рискнуть и попробовать выиграть большую сумму, а может не рисковать и с уверенностью выиграть меньшую сумму. Таким образом игрок может быть пессимистом, крайним оптимистом или нейтралом.
Коэффициент оптимизма λ выбирается между 0 и 1, при этом если коэффициент равен 1, то критерий Гурвица превращается в критерий Вальда (по пессимизму результата), если коэффициент равен 0, то в максимаксный – то есть игрок будет крайним оптимистом.. Число (1- λ) будет характеризовать меру пессимизма игрока А, поэтому в данной работе будем называть коэффициентом пессимизма. Таким образом коэффициенты оптимизма и пессимизма в сумме дают единицу.
С увеличением меры ответственности коэффициент λ стремится к нулю: чем серьезнее последствия ошибочных решений, тем больше желание ЛПР перестраховаться. А чем ближе λ к нулю, тем ближе (1- λ) к единице, т.е. тем больше пессимизма. И наоборот. Заметим, что при коэффициенте λ=0,5 видно нейтральность игрока в оценивании ситуации при выборе стратегии.