
- •Определение технических состояний объекта, технического диагностирования, контроля состояния.
- •Классификация методов контроля и диагностирования.
- •Сущность физических методов контроля. Методы и средства неразрушающего контроля
- •Аккустические методы контроля. Схема коррелятора.
- •Сущность параметрических методов контроля. Контроль внутренних контуров с обратной связью
- •Метод определения работоспособности объектов по определяющим параметрам
- •Метод диагностирования последовательными проверками и половинными делениями
- •Как реализуется ультразвуковой метод контроля качества детали?
- •Как реализуется магнитный метод контроля?
- •Радиационный метод контроля.
- •Метод построения «дерева» поиска отказов в изделии.
- •Тепловой и акустический метод контроля
- •Метод вихревых токов, ультразвуковой метод контроля.
- •Функциональная диагностическая модель объекта
- •Логическая диагностическая модель объекта
- •Модели объектов диагностирования
- •Тестовый контроль
- •Понятие о минимизации тестового контроля. Методы минимизации тестов
- •Электрическая схема и работа пульта проверки угольных регуляторов напряжения ппур-42.
- •Классификация и структура неавтоматизированных средств контроля.
- •Устройство и работа установки для контроля проверки тахометров кту – 1
- •Средства контроля гироскопических приборов. . Каково назначение и отличия установок упг – 48, упг – 56, мпу – 1
- •Устройство и работа ивд укамп.
- •Назначение и классификация автоматизированных средств контроля
- •Функциональная схема аналоговой баск, назначение и устройство ее элементов.
- •Структурная схема цифровой аск Назначение блоков.
- •Бортовые устройства регистрации (бур). Обобщенная схема бур. Схема использования информации бур.
- •Наземные устройства обработки записей бур
- •Средства контроля общего применения. Средства контроля группового применения
- •Средства контроля аэрометрических приборов. Схема индукционного измерителя давлений
- •Магнитная система регистрации параметров мсрп-64: структура, основные блоки и функционирование.
- •Установка для поверки топливомеров кпа-ис1
- •«Дерево» поиска отказов.
Метод диагностирования последовательными проверками и половинными делениями
в конспекте.
Как реализуется ультразвуковой метод контроля качества детали?
Ультразвукова́я дефектоскопи́я — метод основанный С.Я. Соколовым, позволяющий осуществлять поиск дефектов в материале изделия путём излучения и принятия ультразвуковых колебаний, отраженных от внутренних несплошностей (дефектов), и дальнейшего анализа их амплитуды, времени прихода, формы и других характеристик с помощью специального оборудования — ультразвукового дефектоскопа. Является одним из самых распространенных методов неразрушающего контроля.
Существует несколько методов возбуждения ультразвуковых волн в исследуемом объекте. Наиболее распространенным является использование пьезоэлектрического эффекта. В этом случае излучение ультразвука производится с помощью преобразователя, который преобразует электрические колебания в акустические с помощью обратного пьезоэлектрического эффекта. Отраженные сигналы попавшие на пьезопластину из-за прямого пьезоэлектрического эффекта преобразуются в электрические, которые и регистрируются измерительными цепями.
Как реализуется магнитный метод контроля?
Магнитные методы контроля применяются для ферромагнитных материалов. Они основаны на измерении и анализе результатов взаимодействия электромагнитного поля с контролируемым объектом. При наличии в шве несплошностей, вследствие меньшей магнитной проницаемости дефекта, магнитный силовой поток будет огибать дефект, создавая магнитные потоки рассеяния (рис. 182).
При индукционном методе для регистрации магнитных полей рассеяния, образующихся около дефектов в намагниченной детали, используют катушку, которую двигают вдоль шва с постоянной скоростью. Магнитным полем детали в катушке наводится электродвижущая сила (ЭДС). В местах рассеяния поля ЭДС изменяется - образуется электрический сигнал, по которому судят о дефекте. Катушка намотана на сердечнике из металла с высокой магнитной проницаемостью - вместе они составляют магнитную индукционную головку. Она проще феррозонда, так как не требует генератора для питания. Метод отличается повышенной надежностью, может работать в сильных магнитных полях, однако требует перемещения магнитной головки с постоянной скоростью вдоль направления магнитного поля, при этом щель рабочего зазора в сердечнике должна быть перпендикулярна к направлению движения
Преимущества магнитографического метода контроля: высокая разрешающая способность (возможность выявления мелких дефектов), позволяющая регистрировать неоднородные магнитные поля, соизмеримые с размером частиц магнитного слоя ленты (порядка 1 мкм), возможность регистрации дефектов на сложных поверхностях и в узких зазорах. Недостатки: необходимость вторичного преобразования информации, регистрируются только составляющие магнитных полей вдоль поверхности ленты, сложность размагничивания и хранения ленты - необходимо предотвращать воздействие внешних магнитных полей.
Радиационный метод контроля.
Радиационные методы контроля основаны на регистрации и анализе ионизирующего излучения при его взаимодействии с контролируемым изделием. Наиболее часто применяются методы контроля прошедшим излучением, основанные на различном поглощении ионизирующих излучений при прохождении через дефект и бездефектный участок сварного соединения (рис. 178). Интенсивность прошедшего излучения будет больше на участках меньшей толщины или меньшей плотности, в частности в местах дефектов - несплошностей или неметаллических включений.