Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_po_khimii.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
109.77 Кб
Скачать

Свойства ионной связи

Так как ион может притягивать к себе ионы противоположного знака в любом направлении, ионная связь в отличие от ковалентной отличается ненаправленностью.

Взаимодействие друг с другом двух ионов противоположного знака не может привести к полной взаимной компенсации их силовых полей. Поэтому они могут притягивать и другие ионы противоположного знака, то есть ионная связь отличается ненасыщенностью.

18.Гидролиз солей - это химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита.

1. Соль, образованная слабым основанием и сильной кислотой (гидролиз по катиону).

NH4Cl+HOH<—>NH4OH+HCl

NH4+ +Cl-+HOH<—>NH4OH+H++ Cl-

NH4+ +HOH<—>NH4OH+H+

В растворе накапливаются ионы H+, в результате чего реакция смещается в кислую сторону, рН в растворах солей подобного типа меньше7.

2. Соль, образованная сильным основанием и слабой кислотой (гидролиз по аниону).

CH3COONa+HOH<—>CH3COOH+NaOH

CH3COO-+Na++HOH<—>CH3COOH+Na++OH-

CH3COO-+HOH<—>CH3COOH+OH- В данном случае гидролиз ведет к увеличению концентраций ионов в растворе, среда щелочная, рН>7.

3. Соль, образованная слабой кислотой и слабым основанием (гидролиз по катиону и по аниону).

CH3COONH4 +HOH<—>CH3COOH+NH4OH

CH3COO- + NH4+ +HOH<—>CH3COOH+NH4OH

В результате гидролиза ацетата аммония происходит образование двух слабых электролитов, раствор оказывается близким к нейтральному, рН~7.

4. Соль, образованная сильным основанием и сильной кислотой.

Соли подобного типа гид­ролизу не подвергаются. Их ионы не образуют с ионами H+ и  OH-воды слабодиссоциируюших или труднорастворимых соединений, равновесие между ионами и молекулами воды не нарушается и раствор остается нейтральным, рН  равен 7.

Степень гидролиза

Под степенью гидролиза подразумевается отношение части соли, подвергающейся гидролизу, к общей концентрации её ионов в растворе. Обозначается α (или hгидр); α = (cгидр/cобщ)·100 % где cгидр — число молей гидролизованной соли, cобщ — общее число молей растворённой соли. Степень гидролиза соли тем выше, чем слабее кислота или основание, её образующие.

Константа гидролиза — константа равновесия гидролитической реакции. Так константа гидролиза соли равна отношению произведения равновесных концентраций продуктов реакции гидролиза к равновесной концентрации соли с учетом стехиометрических коэффициентов.

В качестве примера ниже приводится вывод уравнения константы гидролиза соли, образованной слабой кислотой и сильным основанием:

Уравнение константы равновесия для данной реакции имеет вид:

    или    

19) Атомные спектры, оптические спектры, получающиеся при испускании или поглощении электромагнитного излучения свободными или слабо связанными атомами (например, в газах или парах). Являются линейчатыми, то есть состоят из отдельных спектральных линий, характеризуемых частотой излучения v, которая соответствует квантовому переходу между уровнями энергии Ei и Ek атома согласно соотношению: hv = Ei-Ek где h-постоянная Планка. Спектральные линии можно характеризовать также длиной волны  = c/v (с - скорость света), волновым числом  = v/c и энергией фотона hv. Частоты спектральных линий выражают в с -1, длины волн - в нм и мкм, а также в А, волновые числа - в см -1, энергии фотонов - в эВ. Типичные атомные спектры наблюдаются в видимой, УФ- и ближней ИК-областях спектра. Спектры испускания, или эмиссионные, получают при возбуждении атомов различными способами (фотонами, электронным ударом и т.д.), спектры поглощения, или абсорбционные, - при прохождении электромагнитного излучения, обладающего непрерывным спектром, через атомарные газы или пары. Для наблюдения атомных спектров применяют приборы с фотографической или фотоэлектрической регистрацией.

  Главное квантовое число n характеризует энергию электронной орбитали. Главное квантовое число принимает значения 1, 2, 3, 4, 5, 6, 7…∞,  обозначаемые  также   буквами K, L, M, N , O, P, Q … Чем больше n, тем выше энергия орбитали. Переходы электронов с одной орбитали на другую сопровождается излучением или поглощением квантов энергии.

Главное квантовое число   характеризует также   удаленность максимума электронной плотности от ядра.  Чем больше n, тем больше объем  орбитали. Совокупность электронов с одинаковым значением n называют энергетическим уровнем или оболочкой, слоем.

Орбитальное (побочное, азимутальное) квантовое число l принимает значения от 0 до (n-1) и характеризует форму граничной поверхности атомной орбитали. Обозначения: 0-s; 1-p; 2-d; 3-f и т.д. Совокупность электронов, имеющих одинаковые значения l и n, называют  энергетическим подуровнем (подоболочкой). Граничная поверхность s-орбиталей имеет форму сферы(рис.4.1,а), р-орбиталей – гантели  (рис.4.1,b-d). Граничные поверхности d-орбиталей показаны на рис.4.1,e-i. Форма граничных поверхностей f-орбиталей сложнее, чем d-орбиталей.

Орбитальное квантовое число характеризует также энергию электронов подуровня в пределах данного энергетического уровня.            

Энергия  подуровней возрастает в ряду s, p, d, f (Es<Ep<Ed<Ef).

Магнитное квантовое число ml характеризует ориентацию орбитали в пространстве и может принимать целочисленные значения от +l до –l, включая  0. d-подуровень содержит пять орбиталей, s-подуровень – одну (рис.4.1,a), p-подуровень – три (рис.4.1,b-d), а f-подуровень – семь орбиталей.

Атомной орбиталью называют также волновую функцию, характеризуемую определенным набором трех квантовых чисел 

Спиновое квантовое число ms характеризует собственное вращение  электрона  вокруг своей оси и может принимать два значения - +1/2 и -1/2.

Состояние электрона в атоме полностью характеризуется с помощью четырех квантовых чисел n, l, ml

 

21) Электронная структура атомов и периодическая система элементов

При l=0, т.е. на s-подуровне *, имеется всего одна орбиталь *, которую принято изображать в виде клетки. В атоме Н единственный электроннаходится на самом низком из возможных энергетических состояний, т.е. на s-подуровне первого электронного слоя (на 1s-подуровне). Электронную структуру атома Н можно представить схемой:

В атоме гелия, порядковый номер которого в периодической системе * (или заряд ядра Z) равен 2, второй электрон тоже находится в состоянии 1s. Электронная структура атома гелия:

У этого атома завершается заполнение ближайшего к ядру K-слоя и тем самым завершается построение первого периода системы элементов.

Рассмотренные для атомов H и He способы описания электронных оболочек называются электронно-графическими формулами (орбиталиизображаются в виде клеток) и электронными формулами (подуровни обозначаются буквами, а количество электронов на них указано верхним индексом).

У следующего за гелием элемента лития (Z=3) третий электрон уже не может разместиться на орбитали K-слоя: это противоречило быпринципу Паули *. Поэтому он занимает s-состояние второго энергетического уровня (L-слой, n=2). Его электронная структура записывается формулой  1s22s1, что соответствует схеме:

Далее формирование электронных оболочек у элементов 2-го периода происходит следующим образом:

Для атома углерода уже можно предположить три возможных схемы заполнения электронных оболочек в соответствии с электронно-графическими формулами:

Анализ атомного спектра показывает, что правильна последняя схема. Такой порядок размещения электронов в атоме углерода представляет собой частный случай общей закономерности, выражаемой правилом Хундаустойчивому состоянию атома соответствует такое распределение электронов в пределах энергетического подуровня, при котором абсолютное значение суммарного спина атома максимально. Пользуясь правиломХунда, нетрудно составить схему электронного строения для атома азота (Z=7):

Этой схеме соответствует формула 1s22s22p3. Затем начинается попарное размещение электронов на 2p-орбиталях. Электронные формулы остальных атомов второго периода:

O  1s22s22p4      F  1s22s22p5      Ne  1s22s22p6

Правило Клечковского (также Правило n+l) — эмпирическое правило, описывающее энергетическое распределение орбиталей в многоэлектронных атомах.

Правило Клечковского. Порядок заполнения электронов в атоме происходит в порядке возрастания n+l. При одинаковой сумме раньше заполняются электроны с меньшим значением n. Правило Клечковского. Принцип наименьших энергий.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]