Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
биохимия.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
254.46 Кб
Скачать

Полиферментные комплексы. Аллостерические ферменты, их структура и роль.

Полиферментные комплексы. В состав таких комплексов, образованных за счет нековалентных взаимодействий, входит несколько индивидуальных ферментов; обычно эти ферменты функционально взаимосвязаны и катализируют серию последовательных реакций.

Аллостерические ферменты Наиболее быстрым, точным и тонким механизмом регуляции активности ферментов является регуляция, которой подвергается определенный тип ферментов, получивших название аллостерических (термин подчеркивает особенность данного типа фермента, заключающуюся в том, что вещества, регулирующие его активность, структурно отличаются от субстрата катализируемой им ферментативной реакции). Эти ферменты, как правило, занимают ключевые позиции в обмене веществ, располагаясь в "стратегических" пунктах клеточного метаболизма - начале метаболических путей или местах разветвлений, где расходятся или сходятся несколько путей.

Аллостерические ферменты имеют каталитический и регуляторный (аллостерический) центры, пространственно разобщенные, но функционально тесно взаимосвязанные. Каталитическая активность фермента меняется в результате связывания с его регуляторным центром определенных метаболитов, называемых эффекторами .

Изоферменты, множественные молекулярные формы ферментов, их свойства, регуляторная функция.

Множественные формы ферментов можно разделить на две категории:

  • Изоферменты

  • Собственно множественные формы (истинные)

Изоферменты— это ферменты, синтез которых кодируется разными генами, у них разная первичная структура и разные свойства, но они катализируют одну и ту же реакцию.

Собственно множественные формы (истинные)— это ферменты, синтез которых кодируется одним и тем же аллелем одного и того же гена, у них одинаковая первичная структура и свойства, но после синтеза на рибосомах они подвергаются модификации и становятся разными, хотя и катализируют одну и ту же реакцию.

Изоферменты разные на генетическом уровне и отличаются от первичной последовательности, а истинные множественные формы становятся разными на посттрансляционном уровне.

Современная теория биологического окисления, сопряженного с синтезом АТФ.

Окисление биологическое — обеспечение организма энергией в доступной для использования форме. Реакции Окисление биологическое в клетках катализируют ферменты, объединяемые в класс оксидоредуктаз.

Окисление биологическое в клетках связано с передачей т. н. восстанавливающих эквивалентов (ВЭ) — атомов водорода или электронов — от одного соединения — донора, к другому — акцептору. У аэробов — большинства животных, растений и многих микроорганизмов — конечным акцептором ВЭ служит кислород.

Основной путь использования энергии, освобождающейся при биологическом окислении — накопление её в молекулах аденозинтрифосфорной кислоты (АТФ). Окисление биологическое, сопровождающееся синтезом АТФ из аденозиндифосфорной кислоты (АДФ) и неорганического фосфата, происходит при гликолизе.

В процессе дыхания углеводы, жиры и белки подвергаются многоступенчатому окислению, которое приводит к восстановлению основных поставщиков ВЭ:

1)никотинамидадениндинуклеотида (НАД) 2)никотинамидадениндинуклеотидфосфата (НАДФ) 3)липоевой кислоты.

Восстановление этих соединений в значительной мере осуществляется в трикарбоновых кислот цикле, которым завершаются основные пути окислительного расщепления углеводов (оно начинается с гликолиза), жиров и аминокислот. Помимо цикла трикарбоновых кислот, некоторое количество восстановленных коферментов — ФАД (флавинадениндинуклеотида) и НАД — образуется при окислении жирных кислот, а также при окислительном дезаминировании глутаминовой кислоты (НАД) и в пентозофосфатном цикле (восстановленный НАДФ).

Гликолиз – процесс распада одной молекулы глюкозы (C6H12O6) на две молекулы молочной кислоты (C3H6O3) с выделением энергии, достаточной для "зарядки" двух молекул АТФ.

Гликолиз может протекать без потребления кислорода (такие процессы называются анаэробными) и с потреблением кислорода (аэробный гликолиз) способен быстро восстанавливать запасы АТФ в мышце.

C6H12O6 + 2H3PO4 + 2АДФ = 2C3H6O3 + 2АТФ + 2H2O.

Энергетический баланс гликолиза — две молекулы АТФ на одну молекулу глюкозы. На I этапе гликолиза расходуются две молекулы АТФ для активирования субстратаНа II этапе образуются четыре молекулы АТФ

Глюконеогенез— процесс образования в печени молекул глюкозы из молекул других органических соединений— источников энергии, например свободных аминокислот, молочной кислоты, глицерина.

При голодании в организме человека активно используются запасы питательных веществ (гликоген, жирные кислоты). Они расщепляются до аминокислот и других неуглеводных соединений. Вещества транспортируются кровью в печень из других тканей, и используются в глюконеогенезе для синтеза глюкозы — основного источника энергии в организме. Таким образом при истощении запасов организма, глюконеогенез является основным поставщиком энергетических субстратов.