Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Vidpovidi_na_liniyku.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.61 Mб
Скачать

Лінійний простір

Векторний простір називається лінійним, якщо у ньому визначено операції над векторами – додавання і множення на число. Проте лінійний простір може бути утворений об’єктами будь-якої природи. Нехай Е - дана множина і x ,y, z … -її елементи; К – множина усіх дійсних (або усіх комплексних) чисел α, β, γ … .Нехай кожній парі x,y елементів множини Е поставлено у відповідність деякий елемент тієї самої множини,який позначається х + у і називається їх сумою. Нехай кожному елементу Х множини Е і кожному числу А із К поставлено у відповідність деякий елемент множини Е, який позначається α х і називається добутком числа α на елемент х. Множина Е називається дійсним(відповідно комплексним) лінійним векторним простором, а її елементи, незалежно від їхньої природи, називають векторами. Так,множина многочленів не вище даного степеня зі звичайними операціями додавання і множення на числа є лінійними векторним простором .У цьому розумінні кожний такий многочлен можна назвати вектором. Множина функцій,неперервних на даному інтервалі, також називається векторним простором , і у цьому розумінні кожна така функція може бути названа вектором.

  1. Системи векторів та способи їх задання. Лінійно залежні і лінійно незалежні системи векторів.

Система векторів і спосіб її задання. Лінійна комбінація векторів

Нехай задано систему векторів a1 , a2 ,…, ak в n-вимірному просторі:

Складемо із компонент векторів прямокутну таблицю, яка називається прямокутною матрицею і позначається буквою А:

або

Таким чином, задання системи векторів у n-вимірному просторі означає задання матриці, яку складено з компонент векторів даної системи. Для одновимірного простору, n= 1, матриця перетворюється або на матрицю-рядок, або на матрицю-стовпець.

Для двовимірного простору (n=2) матриця набуває вигляду

Для тривимірного простору (n=3) маємо

Нехай дано k векторів Помножимо кожний вектор на число λj , де j =1,2,…,k, і знайдені результати додамо. У результаті цього дістанемо вектор, який називається лінійною комбінацією даних векторів:

Числа λj називаються коефіцієнтами даної лінійної комбінації.

Якщо вектор має компоненти (a1j, a2j, … , anj), а вектор має компоненти (b1 , b2 ,…, bn), то рівність запишеться у вигляді

(2.2)

або

Ці рівності рівносильні. У першому випадку залежність записано у векторній формі, а у другому – в скалярній.

Розглянемо питання про те, чи може дорівнювати нулю лінійна комбінація векторів:

Якщо рівність можлива за умови, що принаймні одне з чисел λj де j=1, 2,…,k, не дорівнює нулю, то система даних векторів називається лінійно залежною, а рівність називається нетривіальною. Якщо ж рівність можлива лише за умови, що всі λj=0 одночасно дорівнюють нулю, то система даних векторів називається лінійно незалежною, а рівність - тривіальною.

  1. Матриці та їх види. Дії із матрицями: додавання матриць, множення на число, множення матриць.