
- •Тема 1. Конструкция разрезных пролетные строений с арматурой, напрягаемой на упоры.
- •1.1.Область применения и компоновка сборных плитных пролетных строений с арматурой, напрягаемой на упоры.
- •1.2. Конструкция и армирование блоков плитных пролетных строений с арматурой, напрягаемой на упоры.
- •1.3. Область применения и компоновка сборных ребристых пролетных строений с арматурой, напрягаемой на упоры.
- •1.4. Конструкция и армирование балок ребристых пролетных строений
- •1.5. Конструкция каркасно-стержневого анкера(рис.1.11)
- •1.6. Сборные разрезные ребристые пролетные строения с арматурой, напрягаемой на бетон
- •1.7. Конструкция продольного шва омоноличивания по плите и конструкция омоноличивания по диафрагмам в ребристых пролетных строениях с напрягаемой арматурой
- •1.8 Тангенциальные опорные части ребристых пролетных строений.
- •Тема 2: « Температурно -неразрезные пролетные строения»
- •1. Понятие о температурно-неразрезных пролетных строениях
- •2.Способы получения температурно-неразрезных пролетных строений.
- •3.Конструкция узла объединения ребристых пролетных строений в температурно -неразрезные.
- •4.Конструкция узла объединения плитных пролетных строений в температурно-неразрезные
- •Тема 3. Неразрезные пролетные строения
- •1. Достоинства неразрезных пролетных строений.
- •2.Виды сборных и монолитных неразрезных пролетных строений
- •3. Конструктивные формы поперечных сечений неразрезных пролетных строений.
- •4. Армирование неразрезных пролетных строений.
- •1) Опорные части стаканного типа(рис.4.1)
- •2) Комбинированные опорные части(рис.4.2)
- •Тема 5: Деформационные швы и сопряжение моста с насыпью
- •Назначение и виды деформационных швов
- •Конструкция закрытого деформационного шва (рис.5.1).
- •Конструкция заполненных деформационных швов(рис. 5.2 и 5.3).
- •Сопряжение моста с насыпью
- •Тема 6 Опоры неразрезных железобетонных пролетных строений автодорожных мостов
- •1. Область применения и конструкция монолитных и сборно-монолитных промежуточных опор. Защита их от ледохода.
- •2.Область применения и конструкция промежуточных опор на оболочках и буровых столбах. Защита их от ледохода.
- •Основная идея и средство приближенного определения усилий в балках с учетом пространственной работы пролетного строения.
- •2.Виды поперечных линий влияния нагрузки и их зависимость от жесткости поперечных связей и вида пролетного строения.
- •3. Расчетные случаи воздействия временной нагрузки ак
- •4.Учет многополосности движения на проезжей части при загружении поперечной линии влияния нагрузки .
- •5.Расчетные формулы для вычисления коэффициента поперечной установки ( рис.7.8)-1 схема загружения)
- •Получение продольных линий влияния изгибающих моментов и поперечных сил для расчетных сечений неразрезных балок и правила их загружения.
- •Расчетные формулы для изгибающих моментов и поперечных сил в сечениях балок неразрезных пролетных строений с учетом их пространственной работы под воздействием постоянной и временной нагрузок.
- •Тема 11: Подбор сечений предварительно напряженных балок.
- •Основы методики строгого расчета при подборе сечения балок
- •Расположение арматуры в поперечном направлении.
- •2. Расположение напрягаемой арматуры в продольном направлении в разрезном пролетном строении.
- •3. Расположение напрягаемой арматуры в продольном направлении в неразрезных пролетных строениях.
- •2.Расчет на прочность сжатых железобетонных элементов мостов с расчетным эксцентриситетом r ( п. 3.69).
- •2. Теоретические основы расчета деформаций пролетных строений железобетонных мостов. Определение деформаций пролетных строений железобетонных мостов: прогибов и углов поворота.
- •3.Факторы, определяющие особенности деформирования железобетонных пролетных строений
- •4. Расчетные формулы сНиП для определения прогибов и углов поворота
- •Учтем далее, что расстояние от центра тяжести площади сжатого бетона до центра всего сечения определяется формулой
- •2.Расчет местных напряжений в зоне передачи усилий предварительного напряжения.
- •Диафрагменные ребристые или коробчатые пролетные строения с недеформируемым контуром поперечного сечения, составленного из тонкостенных стержней.
- •Бездиафрагменные коробчатые пролетные строения с замкнутым деформируемым поперечным сечением (рис.19.5).
- •Тема 20 .Рамные железобетонные мосты.
- •1. Схемы и виды рамных железобетонных мостов. Особенности рамных мостов.
- •3. Особенности конструкций рамных мостов малых пролетов.
- •1. Типы поперечных сечений ригелей рамных мостов средних и больших пролетов и особенности
- •3. Узел опирания подвесной балки рамно-балочного моста на ригель(рис.21.4)
- •4. Пример современного рамного моста
- •5. Особенности расчета рамных мостов
- •1. Особенности и области применения арочных железобетонных мостов.
- •2. Виды арочных железобетонных мостов
- •3. Конструкции арочных мостов со сплошными сводами
- •3. Конструкции мостов с раздельными арками.
- •3.4. Форма и размеры поперечного сечения арок
- •3.5. Изменение сечения арки по длине пролета
- •3.6. Армирование раздельных арок.
- •3.7. Шарниры арочных мостов
- •3.8. Особенности конструкции арочных мостов с ездою понизу и посередине.
- •3.9. Опоры арочных мостов
- •Материалы для деревянных мостов.
- •2.Особенности строения древесины .
- •Особенности механических свойств древесины.
- •5. Компоновка и основные типы конструктивных решений деревянных мостов малых пролетов.
- •6. Конструкция проезжей части
- •7. Конструкции пролетных строений из простых прогонов
- •8. Конструкции пролетных строений из сложных прогонов
- •9. Конструкции пролетных строений из клеефанерных блоков
- •10. Опоры мостов малых пролетов
- •11. Сопряжение моста с насыпями подходов
- •1. Компоновка и основные типы конструктивных решений деревянных мостов
- •2. Конструкция проезжей части мостов
- •3. Пролетные строения с клееными балками
- •4. Пролетные строения с дерево - металлическими фермами Гау—Журавского
- •5. Пролетные строения с дощато-гвоздевыми фермами
Особенности механических свойств древесины.
Древесина является материалом с весьма ярко выраженной анизотропией. Ее упругие свойства резко отличаются для направлений вдоль и поперек волокон - почти в 20 раз, а максимальное напряжение в момент, предшествующий разрушению (предел прочности), примерно, в 40 раз. Это объясняется особенностями строения древесины, представляющей собой совокупность волокон, расположенных в основном лишь в одном направлении. Второй, не менее важной причиной анизотропии древесины является ее анатомическое строение с ярко выраженной слоистостью по годовым слоям и структурными особенностями в зависимости от породы.
Прочность древесины зависит от вида напряженного состояния и направления усилия относительно её продольных волокон (рис.5)
Рис. 5. Диаграммы растяжения, сжатия и скалывания древесины вдоль и поперек волокон
1 — растяжение; 2 — сжатие; 3 — растяжение поперек волокон; 4 — смятие; 5 — скалывание вдоль волокон; 6 — скалывание поперек волокон; 7 — перерезывание волокон
Прочность древесины зависит от её породы, что учитывается поправочными коэффициентами, приведенными в СНиП2.05.03-84*.
Прочность древесины зависит от её влажности, температуры среды и времени действия нагрузки.
Предел прочности древесины при температурах ниже нуля при любой влажности повышается: при поперечном изгибе на 40, при сжатии на 30 и при скалывании на 70%. Однако древесина при этом становится более хрупкой, что приводит к снижению сопротивления ударному изгибу.
С увеличением объемного веса древесины одинаковой породы при одной и той же влажности предел прочности ее повышается. На прочность древесины оказывает влияние также ширина годовых слоев и содержание в ней поздней, более плотной древесины; чем выше процент поздней древесины, тем она прочнее.
При определении предела прочности древесины (в кГ/см2) пересчет ее к стандартной влажности в 15% можно производить по формуле
σ15 =σw[1+α(W-15)]
где σ15 — искомый предел прочности при W= 15%;
σw - предел прочности при данной влажности W; α - поправочный коэффициент на влажность; при статическом изгибе для древесин всех пород - 0,04; для скалывания вдоль волокон -0,03; при сжатии вдоль волокон он принимается для сосны и лиственницы - 0,05, а для ели, пихты п дуба — 0,04; при растяжении вдоль волокон для лиственных пород -0,015; для хвойных пород при растяжении пересчет на влажность не производится.
Пересчет предела прочности (в кГ/см2) к стандартной температуре 20° С может быть произведен по формуле
σ20 = [σT + β(T-20)]
где σ20 - искомый предел прочности при Т = 20* С; σT - предел прочности при данной температуре; β - поправочный коэффициент на температуру
Зависимость прочности древесины от времени действия нагрузки обычно характеризуется кривой длительного сопротивления. На рис.6. Приведена кривая длительно сопротивления древесины сосны, свидетельствующая о том, что её прочность с учетом длительности действия постоянной нагрузки снижается от 900 до 650 кгс,см2.
Рис. 6. Кривая длительного сопротивления древесины сосны
Лекция 26 (продолжение предыдущей темы)