Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория (вопросы).doc
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
3.18 Mб
Скачать

Методы понижения порядка уравнения

Дифференциальное уравнение 2-го порядка имеет вид:

. (1.1)

Общим решением уравнения (1.1) является семейство функций, зависящее от двух произвольных постоянных и : (или – общий интеграл дифференциального уравнения 2-го порядка). Задача Коши для дифференциального уравнения 2-го порядка (1.1) состоит в отыскании частного решения уравнения, удовлетворяющего начальным условиям: при . Необходимо заметить, что графики решений уравнения 2-го порядка могут пересекаться в отличие от графиков решений уравнения 1-го порядка. Однако решение задачи Коши для уравнений 2-го порядка (1.1) при довольно широких предположениях для функций, входящих в уравнение, единственно, т.е. всякие два решения с общим начальным условием совпадают на пересечении интервалов, на которых определены уравнения.

Получить общее решение или решить задачу Коши для дифференциального уравнения 2-го порядка аналитически удаётся далеко не всегда. Однако в некоторых случаях удаётся понизить порядок уравнения с помощью введения различных подстановок. Разберем эти случаи.

  1. Уравнения, не содержащие явно независимой переменной . Пусть дифференциальное уравнение 2-го порядка имеет вид:

, (1.2)

т.е. в уравнении (1.1) явно не присутствует независимая переменная . Это позволяет принять за новый аргумент, а производную 1-го порядка принять за новую функцию . Тогда

Таким образом, уравнение 2-го порядка для функции , не содержащее явно , свелось к уравнению 1-го порядка для функции . Интегрируя это уравнение, получаем общий интеграл или , а это есть дифференциальное уравнение 1-го порядка для функции . Решая его, получаем общий интеграл исходного дифференциального уравнения (1.2), зависящий от двух произвольных постоянных:

  1. Свойства решений ЛДУ II-го порядка (с док-вом).

Определение. Линейное дифференциальное уравнение (ЛДУ) 2-го порядка имеет следующий вид:

, (2.1)

где и – заданные функции, непрерывные на том промежутке, на котором ищется решение.

Предполагая, что разделим (2.1) на и, после введения новых обозначений для коэффициентов, запишем уравнение в виде:

(2.2)

Примем без доказательства, что уравнение (2.2) имеет на некотором промежутке единственное решение, удовлетворяющее любым начальным условиям если на рассматриваемом промежутке функции , и непрерывны.

Если , то уравнение (2.2) называется линейным однородным дифференциальным уравнением (ЛОДУ). В противном случае, т.е. при ≢0, уравнение (2.2) называется линейным неоднороднымдифференциальным уравнением (ЛНДУ).

Рассмотрим свойства решений ЛОДУ 2-го порядка.

Определение. Линейной комбинацией функций называется выражение , где – произвольные числа.

Теорема. Если и – решения ЛОДУ

, (2.3)

то их линейная комбинация , где – произвольные числа, также будет решением этого уравнения.

Доказательство. Поставим выражение в уравнение (2.3) и покажем, что в результате получается тождество:

Перегруппируем слагаемые:

Поскольку функции и являются решениями уравнения (2.3), то выражения в каждой из скобок в последнем уравнении тождественно равны нулю, что и требовалось доказать.

Следствие 1. Из доказанной теоремы вытекает при , что если – решение уравнения (2.3), то тоже есть решение этого уравнения.

Следствие 2. Полагая в теореме , получим, что сумма двух решений ЛОДУ также является решением этого уравнения.

Замечание. Доказанное в теореме свойство решений остается справедливым для ЛОДУ любого порядка.