
- •Витебск 2012-2013
- •Множества и операции над ними.
- •Факториал. Метод математической индукции.
- •Бином Ньютона.
- •Свойства бинома Ньютона
- •Многочлены. Корни многочленов. Действия над многочленами. Общий вид разложения многочлена на множители. Многочлен – сумма одночленов.
- •5. Понятие графа, свойство. Способы задания графов. Маршруты, связанность. Деревья. Ориентированные формы.
- •Геометрический
- •Матрица смежности
- •Матрица инцидентности
- •Понятие комплексного числа. Арифметические действия над комплексными числами в алгебраической форме.
- •Действия над комплексными числами в алгебраической форме.
- •Геометрическая иллюстрация комплексного числа. Модуль комплексного числа.
- •Тригонометрическая форма комплексного числа. Действия над комплексными числами в тригонометрической форме.
- •Действия над комплексными числами в тригонометрической форме.
- •Показательная форма комплексного числа. Действия над комплексными числами в показательной форме. Показательная форма комплексного числа
- •Понятие матрицы. Виды матрицы.
- •Линейные операции над матрицами. Умножение матриц.
- •Определители их свойства. Решение систем линейных уравнений методом Крамера.
- •Свойства определителей
- •Обратные матрицы. Матричный способ решения системы линейных уравнений.
- •Системы линейных алгебраических уравнений с п неизвестными. Решение систем линейных уравнений методом Гаусса.
- •Описание метода
- •Понятие вектора на плоскости и в пространстве. Скалярное произведение векторов.
- •Векторное произведение векторов.
- •Смешенное произведение векторов.
- •Линейное пространство и линейные операторы. Евклидово пространство.
- •Различные виды уравнения прямой на плоскости.
- •Взаимное расположение прямых. Угол между прямыми. Расстояние от точки до плоскости.
- •Угол между двумя прямыми
- •21. Эллипс: основные характеристики и изображения.
- •22. Гипербола: основные характеристики и изображения.
- •23. Окружность: основные характеристики и изображения.
- •24. Парабола: основные характеристики и изображения.
- •25. Уравнение прямой в пространстве. Взаимное расположение.
- •Случаи взаимного расположения прямых в пространстве.
- •26. Уравнения плоскости в пространстве.
- •27. Поверхность второго порядка
- •28. Предел числовой последовательности.
- •29. Предел функции в точке и на бесконечности. Предел функции по Коши
- •Предел на бесконечности по Коши
- •30. Первый и второй замечательные пределы.
- •31. Непрерывность функции в точке на бесконечности. Теорема о непрерывных функциях.
- •32. Асимптоты графика функции. Вертикальная
- •Горизонтальная
- •Наклонная
- •33. Понятие производной. Правила дифференцирования. Таблица производных.
- •Правила дифференцирования
- •34. Механический и геометрический смысл производной функции.
- •35. Логарифмическое дифференцирование. Дифференцирование неявной и параметрической функции.
- •36. Правило Лопиталя.
- •37. Дифференциал функции. Использование дифференциала функции приближенного вычисления. Определение дифференциала функции
- •Применение дифференциала в приближенных вычислениях
- •38. Производная и дифференциал высшего порядка. Производные и дифференциалы высших порядков
- •39. Исследования функции и построение графика.
- •40. Понятие функции многих переменных. Частные и производные. Полный дифференциал.
- •41. Локальный экстремум. Условия существования.
- •Определения
- •Достаточные условия существования локальных экстремумов
- •Необходимые условия существования локальных экстремумов
Понятие вектора на плоскости и в пространстве. Скалярное произведение векторов.
Вектором, как на плоскости, так и в пространстве, называется направленный отрезок, то есть такой отрезок, один из концов которого выделен и называетсяначалом, а другой — концом.
Скалярным
произведением векторов
и
называется
произведение их длин на косинус угла
между ними:
|
Совершенно аналогично, как в планиметрии, доказываются следующие утверждения:
Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны.
Скалярный квадрат вектора, то есть скалярное произведение его самого на себя, равно квадрату его длины.
Скалярное произведение двух векторов
и
заданных своими координатами, может быть вычислено по формуле
Векторное произведение векторов.
Векторным
произведением вектора
на
вектор
называется
вектор
,
удовлетворяющий следующим требованиям:
длина вектора равна произведению длин векторов и на синус угла
; между ними
вектор ортогонален каждому из векторов и
вектор направлен так, что тройка векторов
является правой.
Обозначение:
Смешенное произведение векторов.
Сме́шанное
произведе́ние
векторов
— скалярное
произведение вектора
на векторное
произведение векторов
и
:
.
Если
векторы
,
и
заданы
своими координатами, то их смешанное
произведение вычисляется по формуле
Линейное пространство и линейные операторы. Евклидово пространство.
Линейным
пространством L =
{a,b,c,…}называется
множество, относительно элементов
которого определены операции сложения
и умножения на число, причем результаты
этих операций принадлежат этому же
множеству (говорят,
что L замкнуто
относительно операций сложения и
умножения на число):
.
(Элементы линейных пространств также будем называть векторами)
Для
эти
операции удовлетворяют следующим
условиям:
1. a + b = b + a (коммутативность сложения).
2. (a + b) + c = a + (b + c) (ассоциативность сложения).
3.
.
4.
5. 1·а = а.
6.
7. (α + β)а = αа + βа (дистрибутивность).
8. α(а + b) = αa + αb (дистрибутивность).
Евкли́дово простра́нство (также Эвкли́дово простра́нство) — в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность 3.
Различные виды уравнения прямой на плоскости.
Рассмотрим различные виды уравнений прямой на плоскости.
Пусть
прямая проходит через
точку М0 (x0,y0) перпендикулярно вектору n =
{A,B}.
Тогда вектор
,
где М(х,у)
– произвольная точка прямой, ортогонален n.
Поэтому координаты любой точки данной
прямой удовлетворяют уравнению
А(х – х0) + В(у – у0) = 0 - (7.3)
уравнение прямой, проходящей через данную точку перпендикулярно данному вектору.
Замечание. Вектор n называется нормалью к прямой.
Преобразуем уравнение (7.3) к виду:
Ах + Ву + (-Ах0 – Ву0) = 0.
Обозначив -Ах0 – Ву0 = С, получим общее уравнение прямой:
Ах + Ву + С = 0. (7.4)
Получим теперь уравнение прямой, проходящей через точку М0 (x0,y0) параллельно вектору q = {l,m}. Так как вектор , где М(х,у) – произвольная точка прямой, коллинеарен q, координаты любой точки данной прямой удовлетворяют уравнению
, (7.5)
называемому каноническим
уравнением прямой.
Вектор q при
этом называется направляющим
вектором прямой.
В частности, если прямая проходит через
точки М1(х1,у1)
и М2(х2,у2),
ее направляющим вектором можно считать
,
и из уравнения (7.5) следует:
- (7.6)
уравнение прямой, проходящей через две заданные точки.
Пример.
Составим уравнение прямой, проходящей через точки М(1,2) и N(5,-3). Уравнение (7.6) примет вид:
-
общее уравнение данной прямой.
Обозначив за t значения равных дробей, стоящих в левой и правой частях уравнения (7.5),
можно преобразовать это уравнение к виду:
x = x0 + lt, y = y0 + mt - (7.7)
параметрические уравнения прямой.
Для прямой l, не параллельной оси Оу, можно ввести так называемый угловой коэффициент k – тангенс угла, образованного прямой и осью Ох, и записать уравнение
у l прямой в виде:
у = kx + b - (7.8)
b l1 уравнение прямой с угловым коэффициентом.
α α Действительно, все точки прямой l1, параллельной l и проходящей
х через начало координат, удовлетворяют уравнению у = kх, а
ординаты соответствующих точек на прямой l отличаются от них
на постоянную величину b.
Неполные уравнения прямой.
Уравнение (7.4) называется полным, если коэффициенты А,В и С не равны нулю, и неполным, если хотя бы одно из этих чисел равно нулю. Рассмотрим возможные виды неполных уравнений прямой.
1) С = 0 - прямая Ах + Ву = 0 проходит через начало координат.
2) В = 0 - прямая Ах + С = 0 параллельна оси Оу (так как нормаль к прямой {A,0} перпендикулярна оси Оу).
3) А = 0 - прямая Ву + С = 0 параллельна оси Ох.
4) В=С=0 – уравнение Ах = 0 определяет ось Оу.
5) А=С=0 – уравнение Ву = 0 определяет ось Ох.
Таким образом, прямая, задаваемая полным уравнением, не проходит через начало координат и не параллельна координатным осям. Преобразуем полное уравнение прямой следующим образом:
Ах
+ Ву + С =
0 |:(-C),
(7.9)
где
и
равны
величинам отрезков, отсекаемых
прямой на осях Ох и Оу.
Поэтому уравнение (7.9) называют уравнением
прямой в отрезках.