
- •Витебск 2012-2013
- •Множества и операции над ними.
- •Факториал. Метод математической индукции.
- •Бином Ньютона.
- •Свойства бинома Ньютона
- •Многочлены. Корни многочленов. Действия над многочленами. Общий вид разложения многочлена на множители. Многочлен – сумма одночленов.
- •5. Понятие графа, свойство. Способы задания графов. Маршруты, связанность. Деревья. Ориентированные формы.
- •Геометрический
- •Матрица смежности
- •Матрица инцидентности
- •Понятие комплексного числа. Арифметические действия над комплексными числами в алгебраической форме.
- •Действия над комплексными числами в алгебраической форме.
- •Геометрическая иллюстрация комплексного числа. Модуль комплексного числа.
- •Тригонометрическая форма комплексного числа. Действия над комплексными числами в тригонометрической форме.
- •Действия над комплексными числами в тригонометрической форме.
- •Показательная форма комплексного числа. Действия над комплексными числами в показательной форме. Показательная форма комплексного числа
- •Понятие матрицы. Виды матрицы.
- •Линейные операции над матрицами. Умножение матриц.
- •Определители их свойства. Решение систем линейных уравнений методом Крамера.
- •Свойства определителей
- •Обратные матрицы. Матричный способ решения системы линейных уравнений.
- •Системы линейных алгебраических уравнений с п неизвестными. Решение систем линейных уравнений методом Гаусса.
- •Описание метода
- •Понятие вектора на плоскости и в пространстве. Скалярное произведение векторов.
- •Векторное произведение векторов.
- •Смешенное произведение векторов.
- •Линейное пространство и линейные операторы. Евклидово пространство.
- •Различные виды уравнения прямой на плоскости.
- •Взаимное расположение прямых. Угол между прямыми. Расстояние от точки до плоскости.
- •Угол между двумя прямыми
- •21. Эллипс: основные характеристики и изображения.
- •22. Гипербола: основные характеристики и изображения.
- •23. Окружность: основные характеристики и изображения.
- •24. Парабола: основные характеристики и изображения.
- •25. Уравнение прямой в пространстве. Взаимное расположение.
- •Случаи взаимного расположения прямых в пространстве.
- •26. Уравнения плоскости в пространстве.
- •27. Поверхность второго порядка
- •28. Предел числовой последовательности.
- •29. Предел функции в точке и на бесконечности. Предел функции по Коши
- •Предел на бесконечности по Коши
- •30. Первый и второй замечательные пределы.
- •31. Непрерывность функции в точке на бесконечности. Теорема о непрерывных функциях.
- •32. Асимптоты графика функции. Вертикальная
- •Горизонтальная
- •Наклонная
- •33. Понятие производной. Правила дифференцирования. Таблица производных.
- •Правила дифференцирования
- •34. Механический и геометрический смысл производной функции.
- •35. Логарифмическое дифференцирование. Дифференцирование неявной и параметрической функции.
- •36. Правило Лопиталя.
- •37. Дифференциал функции. Использование дифференциала функции приближенного вычисления. Определение дифференциала функции
- •Применение дифференциала в приближенных вычислениях
- •38. Производная и дифференциал высшего порядка. Производные и дифференциалы высших порядков
- •39. Исследования функции и построение графика.
- •40. Понятие функции многих переменных. Частные и производные. Полный дифференциал.
- •41. Локальный экстремум. Условия существования.
- •Определения
- •Достаточные условия существования локальных экстремумов
- •Необходимые условия существования локальных экстремумов
Определители их свойства. Решение систем линейных уравнений методом Крамера.
Определитель матрицы является многочленом от элементов квадратной матрицы (то есть такой, у которой количество строк и столбцов равно).
Свойства определителей
1. Определитель не меняется при транспонировании.
2. Если одна из строк определителя состоит из нулей, то определитель равен нулю.
3. Если в определителе переставить две строки, определитель поменяет знак.
4. Определитель, содержащий две одинаковые строки, равен нулю.
5. Если все элементы некоторой строки определителя умножить на некоторое число k, то сам определитель умножится на k.
6. Определитель, содержащий две пропорциональные строки, равен нулю.
7.
Если все элементы i-й строки определителя
представлены в виде суммы двух слагаемых
ai
j =
bj +
cj (j=
),
то определитель равен сумме определителей,
у которых все строки, кроме i-ой, - такие
же, как в заданном определителе, а i-я
строка в одном из слагаемых состоит из
элементов bj,
в другом - из элементов cj.
8. Определитель не меняется, если к элементам одной из его строк прибавляются соответствующие элементы другой строки, умноженные на одно и то же число.
Метод Крамера (правило Крамера) — способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно).
Рассмотрим
систему уравнений
На первом
шаге вычислим определитель
,
его называют главным
определителем системы.
Если
,
то система имеет бесконечно много
решений или несовместна (не имеет
решений). В этом случае правило Крамера
не поможет, нужно использовать метод
Гаусса.
Если
,
то система имеет единственное решение,
и для нахождения корней мы должны
вычислить еще два определителя:
и
На
практике вышеуказанные определители
также могут обозначаться латинской
буквой
.
Корни
уравнения находим по формулам:
,
Обратные матрицы. Матричный способ решения системы линейных уравнений.
Обра́тная ма́трица — такая матрица A−1, при умножении на которую, исходная матрица A даёт в результате единичную матрицу E:
Матричный способ!
.
Решение.
Найдем элементы союзной матрицы
Таким образом,
.
Проверка АА-1 = Е. Действительно
Системы линейных алгебраических уравнений с п неизвестными. Решение систем линейных уравнений методом Гаусса.
Система m линейных алгебраических уравнений с n неизвестными в линейной алгебре — это система уравнений вида
|
Описание метода
Пусть исходная система выглядит следующим образом
Матрица
называется
основной матрицей системы,
—
столбцом свободных членов.
Тогда согласно свойству элементарных преобразований над строками основную матрицу этой системы можно привести к ступенчатому виду(эти же преобразования нужно применять к столбцу свободных членов):
При
этом будем считать, что базисный
минор (ненулевой минор максимального
порядка) основной матрицы находится в
верхнем левом углу, то есть в него входят
только коэффициенты при переменных
[3].
Тогда переменные называются главными переменными. Все остальные называются свободными.
Если
хотя бы одно число
,
где
,
то рассматриваемая система несовместна,
т.е. у неё нет ни одного решения.
Пусть
для
любых
.
Перенесём
свободные переменные за знаки равенств
и поделим каждое из уравнений системы
на свой коэффициент при самом левом
(
,
где
—
номер строки):
,
где
Если свободным переменным системы (2) придавать все возможные значения и решать новую систему относительно главных неизвестных снизу вверх (то есть от нижнего уравнения к верхнему), то мы получим все решения этой СЛАУ. Так как эта система получена путём элементарных преобразований над исходной системой (1), то по теореме об эквивалентности при элементарных преобразованиях системы (1) и (2) эквивалентны, то есть множества их решений совпадают.