
- •Витебск 2012-2013
- •Множества и операции над ними.
- •Факториал. Метод математической индукции.
- •Бином Ньютона.
- •Свойства бинома Ньютона
- •Многочлены. Корни многочленов. Действия над многочленами. Общий вид разложения многочлена на множители. Многочлен – сумма одночленов.
- •5. Понятие графа, свойство. Способы задания графов. Маршруты, связанность. Деревья. Ориентированные формы.
- •Геометрический
- •Матрица смежности
- •Матрица инцидентности
- •Понятие комплексного числа. Арифметические действия над комплексными числами в алгебраической форме.
- •Действия над комплексными числами в алгебраической форме.
- •Геометрическая иллюстрация комплексного числа. Модуль комплексного числа.
- •Тригонометрическая форма комплексного числа. Действия над комплексными числами в тригонометрической форме.
- •Действия над комплексными числами в тригонометрической форме.
- •Показательная форма комплексного числа. Действия над комплексными числами в показательной форме. Показательная форма комплексного числа
- •Понятие матрицы. Виды матрицы.
- •Линейные операции над матрицами. Умножение матриц.
- •Определители их свойства. Решение систем линейных уравнений методом Крамера.
- •Свойства определителей
- •Обратные матрицы. Матричный способ решения системы линейных уравнений.
- •Системы линейных алгебраических уравнений с п неизвестными. Решение систем линейных уравнений методом Гаусса.
- •Описание метода
- •Понятие вектора на плоскости и в пространстве. Скалярное произведение векторов.
- •Векторное произведение векторов.
- •Смешенное произведение векторов.
- •Линейное пространство и линейные операторы. Евклидово пространство.
- •Различные виды уравнения прямой на плоскости.
- •Взаимное расположение прямых. Угол между прямыми. Расстояние от точки до плоскости.
- •Угол между двумя прямыми
- •21. Эллипс: основные характеристики и изображения.
- •22. Гипербола: основные характеристики и изображения.
- •23. Окружность: основные характеристики и изображения.
- •24. Парабола: основные характеристики и изображения.
- •25. Уравнение прямой в пространстве. Взаимное расположение.
- •Случаи взаимного расположения прямых в пространстве.
- •26. Уравнения плоскости в пространстве.
- •27. Поверхность второго порядка
- •28. Предел числовой последовательности.
- •29. Предел функции в точке и на бесконечности. Предел функции по Коши
- •Предел на бесконечности по Коши
- •30. Первый и второй замечательные пределы.
- •31. Непрерывность функции в точке на бесконечности. Теорема о непрерывных функциях.
- •32. Асимптоты графика функции. Вертикальная
- •Горизонтальная
- •Наклонная
- •33. Понятие производной. Правила дифференцирования. Таблица производных.
- •Правила дифференцирования
- •34. Механический и геометрический смысл производной функции.
- •35. Логарифмическое дифференцирование. Дифференцирование неявной и параметрической функции.
- •36. Правило Лопиталя.
- •37. Дифференциал функции. Использование дифференциала функции приближенного вычисления. Определение дифференциала функции
- •Применение дифференциала в приближенных вычислениях
- •38. Производная и дифференциал высшего порядка. Производные и дифференциалы высших порядков
- •39. Исследования функции и построение графика.
- •40. Понятие функции многих переменных. Частные и производные. Полный дифференциал.
- •41. Локальный экстремум. Условия существования.
- •Определения
- •Достаточные условия существования локальных экстремумов
- •Необходимые условия существования локальных экстремумов
Министерство образования Республики Беларусь
Витебский государственный политехнический колледж
Подготовка к экзамену
по математике за второй курс обучения
за первый семестр
Учащегося группы ПЗ-35
Шидловского Александра Викторовича
Витебск 2012-2013
Множества и операции над ними.
Множества и операции над множествами
Напомним основные обозначения, понятия, относящиеся к множествам, которых будем придерживаться дальше.
Начнем с основного понятия, которое встречается практически в каждом разделе математики - это понятие множества.
Множество - это совокупность, набор элементов, объединенных общими свойствами.
Множества
обозначаются заглавными латинскими
буквами
,
а элементы множества строчными латинскими
буквами
.
Запись
означает,
что есть множество
с
элементами
,
которые связаны между собой какой-то
функцией
.
Замечание. Элементы в множество входят по одному разу, т.е. без повторений.
Факториал. Метод математической индукции.
Метод математической индукции
Метод математической индукции является важным способом доказательства предложений (утверждений), зависящих от натурального аргумента.
Метод математической индукции состоит в следующем:
Предложение (утверждение) P(n), зависящее от натурального числа n, справедливо для любого натурального n если:
P(1) является истинным предложением (утверждением);
P(n) остается истинным предложением (утверждением), если n увеличить на единицу, то есть P(n + 1) - истинное предложение (утверждение).
Таким образом метод математической индукции предполагает два этапа:
Этап проверки: проверяется, истинно ли предложение (утверждение) P(1).
Этап доказательства: предполагается, что предложение P(n) истинно, и доказывается истинность предложения P(n + 1) (n увеличено на единицу).
Замечание 1. В некоторых случаях метод математической индукции используется в следующей форме:
Пусть m - натуральное число, m > 1 и P(n) - предложение, зависящее от n, n ≥ m.
Если
P(m) справедливо;
P(n) будучи истинным предложением, влечет истинность предложения P(n + 1) для любого натурального n, n ≥ m, тогда P(n) - истинное предложение для любого натурального n, n ≥ m.
В дальнейшем рассмотрим примеры применения метода математической индукции.
Факториа́л числа n (лат. factorialis — действующий, производящий умножающий; обозначается n!, произносится эн факториа́л) — произведение всех натуральных чисел от 1 до nвключительно:
Например:
По определению полагают 0! = 1. Факториал определён только для целых неотрицательных чисел.
Бином Ньютона.
Возведение двучлена a + b в степень n может быть произведено по формуле называемой разложением бинома Ньютона:
(a + b)n = an + C1n an - 1 b + C2n an - 2 b2 +...+Ckn an - k bk +... + Cn - 1n abn - 1 + Cnnbn
или (после подстановки выражений Ckn с учетом формулы Ckn = Cn - kn):
,
где Ckn — число всех возможных сочетаний, которые можно образовать из n элементов по k.
Пример: (a + b)5 = a5 + C15 a4b + C25 a3b2 + C35 a2b3 + C45 ab4 + C55 b5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5