Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
differentsialnoe_ischislenie.docx
Скачиваний:
5
Добавлен:
01.03.2025
Размер:
5.6 Mб
Скачать

13. Понятие производной функции, ее механический и геометрический смысл. Понятие дифференцируемости функции в точке.

Ответ:

Производная. Рассмотрим некоторую функцию  f ( ) в двух точках  x0  и  x0 +  :  x0 ) и  f (x0 +   ). Здесь через   обозначено некоторое малое изменение аргумента, называемое приращением аргумента; соответственно разность между двумя значениями функции:  f x0 +   ) f ( x0 ) называется приращением функцииПроизводной функции  f ( ) в точке  x0  называется предел:

Определение. Производной функции   называется предел отношения приращения функции к приращению независимой переменной при стремлении последнего к нулю (если этот предел существует):

.

Геометрический смысл производной.  Рассмотрим график функции  y f ( x ): 

Из рис.1  видно, что для любых двух точек A и B графика функции:  

где    - угол наклона секущей AB.

Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точку B, то    неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.

Уравнение касательной. Выведем уравнение касательной к графику функции в точке A ( x0 ,  f ( x0 ) ). В общем случае уравнение прямой с угловым коэффициентом  f ’( x0 )  имеет вид: 

y = f ’( x0 ) · x + b .

Чтобы найти b, воспользуемся тем, что касательная проходит через точку A:

f ( x0 ) = f ’( x0 ) · x0 + b ,

отсюда,  b =  f ( x0 ) – f ’( x0 ) · x0 , и подставляя это выражение вместо  b, мы получим  уравнение касательной:

y =  f ( x0 ) +  f ’( x0 ) · ( x – x0  ) .

Механический смысл производной. Рассмотрим простейший случай: движение материальной точки вдоль координатной оси, причём закон движения задан:  координата  x  движущейся точки –известная функция  x ( t ) времени  t. В течение интервала времени от  t0  до  t0 +    точка перемещается на расстояние:  x ( t0 +   )  x ( t0 ) =  , а её средняя скорость равна:  va    .При      0  значение средней скорости стремится к определённой величине, которая называетсямгновенной скоростью  v ( t0 )  материальной точки в момент времени  t0 . Но по определению производной мы имеем:

отсюда,  v t0 ) = x’ t0 ) , т.e. скорость – это производная координаты по времени. В этом и состоит  механический смысл производнойАналогично, ускорение – это производная скорости по времени:  a = v’ t ).

 

 

Понятие дифференцируемости функции в точке.

 

Определение Функция y=f(x) называется дифференцируемой в точке x0, если ее приращение Δy в точке x0 может быть представлено в виде: Δy=A·Δx+α(Δx)·Δx, где A -- некоторое число, независящее от Δx, а α(Δx)-- бесконечно малая функция от переменной Δx, т.е. lim α(Δx)=0.

Δx→0

 

Теорема Для того, чтобы функция y=f(x) была дифференцируема в точке x0, необходимо и достаточно, чтобы она в этой точке имела конечную производную. Доказательство  Необходимость. Предположим: функция дифференцируема в точке x0, т.е. Δy=A·Δx+α(Δx)·Δx. Разделив обе части данного равенства на Δx, получим: ΔxΔy=A+α(Δx). Из определения производной функции в точке: y/(x0)=limΔx→0ΔxΔy=limΔx→0(A+α(Δx))=A.

Т.е. получили, что существует конечная производная функции в точке x0 и y/(x0)=A . Достаточность. Пусть существует конечная производная y/(x0)∈R . Покажем дифференцируемость функции. y/(x0)=limΔx→0ΔxΔy.

Если функция f(x) имеет конечный предел b при Δx→0 , то ее можно представить: f(x)=b+α(x) (α(x)→0) . Исходя из этого: ΔxΔy=y/(x0)+α(Δx), где limΔx→0α(Δx)=0, Δy=y/(x0)·Δx+α(Δx)·Δx→ A=y/(x0) . Теорема доказана.

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]