
- •Тепломассообмен
- •8.1 Общие положения ……………………………………………………….
- •10.1 Общие положения …………………………………………………….
- •Курс лекций
- •1. Основные положения теплопроводности
- •Температурное поле
- •Температурный градиент
- •Тепловой поток. Закон Фурье
- •Коэффициент теплопроводности
- •Дифференциальное уравнение теплопроводности
- •1.6 Условия однозначности для процессов теплопроводности
- •2. Теплопроводность при стационарном режиме
- •Передача теплоты через плоскую стенку ( )
- •Передача теплоты через цилиндрическую стенку ( )
- •Критический диаметр цилиндрической стенки
- •Передача теплоты через шаровую стенку
- •Пути интенсификации теплопередачи
- •Теплопередача через ребристую плоскую стенку
- •3. Теплопроводность при нестационарном режиме
- •3.1 Основные положения
- •Неограниченная пластина
- •Цилиндр бесконечной длины
- •Регулярный режим теплопроводности
- •Теплопроводность в телах сложной формы
- •4. Основные положения конвективного теплообмена
- •4.1 Основные понятия и определения
- •4.2 Физические свойства жидкости
- •Дифференциальные уравнения конвективного теплообмена
- •4.4 Гидродинамический и тепловой пограничные слои
- •5. Подобие процессов конвективного теплообмена
- •Общие положения
- •5.3 Критерии подобия и уравнения подобия
- •Условия подобия физических процессов
- •Следствия из условий подобия
- •6 Конвективный теплообмен в потоке жидкости
- •7. Теплообмен при изменении агрегатного состояния
- •Общие положения
- •Общие положения
- •Методические указания
- •К проведению практических занятий
1.6 Условия однозначности для процессов теплопроводности
Так как дифференциальное уравнение теплопроводности выведено на основе общих законов физики, то оно описывает явление теплопроводности в самом общем виде. Поэтому можно сказать, что полученное дифференциальное уравнение описывает целый класс явлений теплопроводности. Чтобы из бесчисленного количества выделить конкретно рассматриваемый процесс и дать его полное математическое описание, к дифференциальному уравнению необходимо присоединить математическое описание всех частных особенностей рассматриваемого процесса.
Эти частные особенности, которые совместно с дифференциальным уравнением дают полное математическое описание конкретного процесса теплопроводности, называются условиями однозначности или краевыми условиями.
Условия однозначности включают в себя:
– геометрические условия, характеризующие форму и размеры тела, в которых протекает процесс;
– физические условия, характеризующие физические свойства среды и тела;
– временные (начальные) условия, характеризующие распределение температур в изучаемом теле в начальный момент времени;
– граничные условия, характеризующие взаимодействие рассматриваемого тела с окружающей средой.
Геометрическими условиями задаются форма и линейные размеры тела, в котором протекает процесс.
Физическими условиями задаются физические параметры тела λ, с, ρ и др. и может быть задан закон распределения внутренних источников теплоты.
Начальные условия необходимы при рассмотрении нестационарных процессов и состоят в задании закона распределения температуры внутри тела в начальный момент времени. В общем случае начальное условие аналитически может быть записано следующим образом
при τ =0
.
(1.30)
В случае равномерного распределения температуры в теле начальное условие упрощается
при τ =0
.
(1.31)
а) Граничные условия первого рода. При этом задается распределение температуры на поверхности тела для каждого момента времени
,
(1.32)
где tc – температура на поверхности тела; x,y,z – координаты поверхности тела.
В частном случае, когда температура на поверхности является постоянной на протяжении всего времени протекания процессов теплообмена, уравнение (1.33) упрощается и принимает вид
.
б) Граничные условия второго рода. При этом задаются значения теплового потока для каждой точки поверхности тела и любого момента времени.
Аналитически это можно представить следующим образом
,
(1.33)
где qп – плотность теплового потока на поверхности тела; x,y,z – как и в случае (1.32) – координаты на поверхности тела.
В простейшем случае плотность теплового потока по поверхности и во времени остается постоянной:
.
(1.34)
Такой случай теплообмена имеет место, например, при нагревании различных металлических изделий в высокотемпературных печах.
в) Граничные условия третьего рода. При этом задаются температура окружающей среды tж и закон теплообмена между поверхностью тела и окружающей средой. Граничное условие третьего рода характеризует закон теплообмена между поверхностью и окружающей средой в процессе охлаждения и нагревания тела. Для описания процесса теплообмена между поверхностью тела и средой используется закон Ньютона – Рихмана.
Процесс теплообмена между поверхностью тела и средой относится к очень сложным процессам и зависит от большого количества параметров. Подробно эти вопросы будут рассмотрены во второй и третьей частях комплекса.
Согласно закону Ньютона – Рихмана количество теплоты, отдаваемое единицей поверхности тела в единицу времени, пропорционально разности температур поверхности тела tc и окружающей среды tж (tс>tж)
,
(1.35)
где α – коэффициент пропорциональности, называемый коэффициентом теплоотдачи, Вт/(м2·К).
Коэффициент теплоотдачи характеризует интенсивность теплообмена между поверхностью тела и окружающей средой. Численно он равен количеству теплоты, отдаваемому (или воспринимаемому) единицей поверхности в единицу времени при разности температур между поверхностью тела и окружающей средой, равной одному градусу.
Согласно закону сохранения энергии количество теплоты, которое отводится с единицы поверхности в единицу времени вследствие теплоотдачи, должно равняться теплоте, подводимой к единице поверхности в единицу времени вследствие теплопроводности из внутренних объемов тела, т. е.
,
(1.36)
где n – нормаль к поверхности тела; индекс «с» указывает на то, что температура и градиент относятся к поверхности тела (при n =0).
Окончательно граничное условие третьего рода можно записать в виде
.
(1.37)
Уравнение (1.37) по существу является частным выражением закона сохранения энергии для поверхности тела.
Коэффициент теплоотдачи зависит от большого числа факторов. Однако во многих случаях коэффициент теплоотдачи можно считать неизменным, поэтому мы будем в дальнейшем при решении задач теплопроводности принимать величину α постоянной.