
- •Тепломассообмен
- •8.1 Общие положения ……………………………………………………….
- •10.1 Общие положения …………………………………………………….
- •Курс лекций
- •1. Основные положения теплопроводности
- •Температурное поле
- •Температурный градиент
- •Тепловой поток. Закон Фурье
- •Коэффициент теплопроводности
- •Дифференциальное уравнение теплопроводности
- •1.6 Условия однозначности для процессов теплопроводности
- •2. Теплопроводность при стационарном режиме
- •Передача теплоты через плоскую стенку ( )
- •Передача теплоты через цилиндрическую стенку ( )
- •Критический диаметр цилиндрической стенки
- •Передача теплоты через шаровую стенку
- •Пути интенсификации теплопередачи
- •Теплопередача через ребристую плоскую стенку
- •3. Теплопроводность при нестационарном режиме
- •3.1 Основные положения
- •Неограниченная пластина
- •Цилиндр бесконечной длины
- •Регулярный режим теплопроводности
- •Теплопроводность в телах сложной формы
- •4. Основные положения конвективного теплообмена
- •4.1 Основные понятия и определения
- •4.2 Физические свойства жидкости
- •Дифференциальные уравнения конвективного теплообмена
- •4.4 Гидродинамический и тепловой пограничные слои
- •5. Подобие процессов конвективного теплообмена
- •Общие положения
- •5.3 Критерии подобия и уравнения подобия
- •Условия подобия физических процессов
- •Следствия из условий подобия
- •6 Конвективный теплообмен в потоке жидкости
- •7. Теплообмен при изменении агрегатного состояния
- •Общие положения
- •Общие положения
- •Методические указания
- •К проведению практических занятий
Курс лекций
Введение в курс лекций
Под процессом распространения теплоты понимается обмен внутренней энергией между отдельными элементами, областями рассматриваемой среды. Перенос теплоты осуществляется тремя основными способами: теплопроводностью, конвекцией и тепловым излучением.
Теплопроводность представляет собой молекулярный перенос теплоты в телах (или между ними), обусловленный переменностью температуры в рассматриваемом пространстве.
Конвекция возможна только в текучей среде. Под конвекцией теплоты понимают процесс ее переноса при перемещении объемов жидкости или газа (текучей среды) в пространстве из области с одной температурой в область с другой. При этом перенос теплоты неразрывно связан с переносом самой среды.
Тепловое излучение – процесс распространения теплоты с помощью электромагнитных волн, обусловленный только температурой и оптическими свойствами излучающего тела; при этом внутренняя энергия тела (среды) переходит в энергию излучения. Процесс превращения внутренней энергии вещества в энергию излучения, переноса излучения и его поглощения веществом называется теплообменом излучением. В природе и технике элементарные процессы распространения теплоты – теплопроводность, конвекция и тепловое излучение – очень часто происходят совместно.
Теплопроводность в чистом виде большей частью имеет место лишь в твердых телах.
Конвекция теплоты всегда сопровождается теплопроводностью. совместный процесс переноса теплоты конвекцией и теплопроводностью называется конвективным теплообменом.
В инженерных расчетах часто определяют конвективный теплообмен между потоками жидкости или газа и поверхностью твердого тела; этот процесс конвективного теплообмена называют конвективной теплоотдачей или теплоотдачей.
В технике и в быту часто происходят процессы теплообмена между различными жидкостями, разделенными твердой стенкой. Процесс передачи теплоты от горячей жидкости к холодной через разделяющую их стенку называется теплопередачей. Теплопередача осуществляется различными элементарными процессами теплопереноса. Парогенерирующие трубы котельного агрегата, например, получают теплоту от продуктов сгорания топлива в результате радиационно-конвективного теплообмена. Через слой наружного загрязнения, металлическую стенку и слой накипи теплота передается теплопроводностью. От внутренней поверхности трубы к омывающей ее жидкости теплота переносится конвективным теплообменом (теплоотдачей).
Процессы теплообмена могут происходить в различных средах: чистых веществах и разных смесях, при изменении и без изменения агрегатного состояния рабочих сред и т.д. В зависимости от этого теплообмен протекает по-особому и описывается различными уравнениями.
Многие процессы переноса теплоты сопровождаются переносом вещества. Например, при испарении воды в воздух, помимо теплообмена, имеет место и перенос образовавшегося пара в паровоздушной смеси. В общем случае перенос пара осуществляется как молекулярным, так и конвективным путем. Совместный молекулярный и конвективный перенос массы называют конвективным массообменном. При наличии массообмена процесс теплообмена усложняется. Теплота дополнительно может переноситься вместе с массой диффундирующих веществ.
Тепломассообмен – это наука о самопроизвольных необратимых процессах совместного переноса теплоты и массы компонента в пространстве с неоднородными полями температур и концентраций компонента.
При теоретическом исследовании теплообмена приходиться вводить некоторые модельные представления о среде, в которой происходят изучаемые процессы. Рассматриваемые газы, жидкости и твердые тела в подавляющем большинстве случаев считаются сплошной средой, т.е. средой, при рассмотрении которой допустимо пренебречь ее дискретным строением.
Сплошная среда может быть однофазной и многофазной. В однофазной среде, состоящей из чистого вещества или из смеси веществ, свойства изменяются в пространстве непрерывно. В многофазной среде, состоящей из ряда однофазных частей, на границах раздела свойства изменяются скачками. теплообмен в однофазных и многофазных системах протекает по-разному.
Изучение как простых, так и более сложных процессов переноса теплоты и массы в различных средах и является задачей изучаемого курса.
Часть первая. ТЕПЛОПРОВОДНОСТЬ