Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_31-40.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
65.02 Кб
Скачать

33.Корреляционный анализ.

Слово «корреляция» ввел в употребление Ф.Гальтон в конце XIXв. обозначая им соответствие (correlation), в отличие от обычной функциональной связи (relation).

Корреляционной связью двух переменных называют частный случай статистической связи, состоящий в том, что разным значениям факторной переменной X соответствуют различные средние значения результативной переменной Y.

Корреляционная связь между признаками может возникать тремя путями. Во‑первых, она может проявиться как причинная зависимость результативного признака (его вариации) от вариации факторного признака.

Во-вторых, она может проявиться между двумя следствиями общей причины. Данную корреляцию нельзя интерпретировать как связь причины и следствия.

В-третьих, корреляция возникает при взаимосвязи признаков, каждый из которых может выступать и как причина, и как следствие. В такой системе каждый признак может выступать и в роли независимой переменной X, и в качестве зависимой переменной Y.

Первым условием возможности изучения корреляции является общее условие всякого статистического исследования: - наличие данных по достаточно большой совокупности явлений.

Вторым условием возможности изучения корреляционной связи служит условие, обеспечивающее достоверное выражение закономерности в средней величине для чего необходима качественная однородность исследуемой совокупности.

Третьим условием корреляционного анализа является необходимость подчинения распределения совокупности по результативному Y и факторному X признакам нормальному закону распределения. Это условие связано с используемым при корреляционном анализе математическим аппаратом, дающим достоверную оценку параметров корреляции только при нормальном распределении. Однако на практике это условие чаще всего выполняется приближенно, но и в этом случае получаемые результаты обладают достаточной надежностью.

По форме корреляционные связи могут быть линейными (прямолинейными) и нелинейными (криволинейными), а по направлению - прямыми (положительными) и обратными (отрицательными).

Прямая связь свидетельствует о том, что с увеличением (уменьшением) значений одного признака увеличиваются (уменьшаются) значения другого признака. При обратной связи увеличение (уменьшение) значений одного признака ведет к уменьшению (увеличению) значений другого признака.

Главная задача корреляционного анализа - измерение тесноты связи - решается путем вычисления различных коэффициентов корреляции и проверки их значимости.

Коэффициент корреляции может принимать значения при прямой связи от 0 до + 1, а при обратной - от - 1 до 0.

34.Регрессионный анализ.

Регрессионный анализ позволяет оценить функцию зависимости связи.

Регрессия может быть:

а) в зависимости от числа явлений (переменных):

  • простой (регрессия между двумя переменными);

  • множественной (регрессия между зависимой переменной (y) и несколькими объясняющими ее переменными (х1, х2...хn);

б) в зависимости от формы:

  • линейной (отображается линейной функцией, а между изучаемыми переменными существуют линейные соотношения);

  • нелинейной (отображается нелинейной функцией, между изучаемыми переменными связь носит нелинейный характер);

в) по характеру связи между включенными в рассмотрение переменными:

- положительной (увеличение значения объясняющей перемен-ной приводит к увеличению значения зависимой переменной и наоборот);

- отрицательной (с увеличением значения объясняющей пере-менной значение объясняемой переменной уменьшается);

г) по типу:

- непосредственной (в этом случае причина оказывает прямое воздействие на следствие, т.е. зависимая и объясняющая переменные связаны непосредственно друг с другом);

- косвенной (объясняющая переменная оказывает опосредованное действие через третью или ряд других переменных на зависимую переменную);

- ложной (нонсенс-регрессия) - может возникнуть при поверхностном и формальном подходе к исследуемым процессам и явлениям.

При проведении регрессионного анализа решаются следующие основные задачи:

1. Определение формы зависимости.

2. Определение функции регрессии. Для этого используют математическое уравнение того или иного типа, позволяющее, во-первых, установить общую тенденцию изменения зависимой переменной, а, во-вторых, вычислить влияние объясняющей переменной (или нескольких переменных) на зависимую переменную.

3. Оценка неизвестных значений зависимой переменной.

Технология построения регрессии

Для построения регрессии используется метод, получивший название метода наименьших квадратов. Суть его заключается в нахождении по фактическим данным динамического ряда теоретической кривой (тренд), точки которой равноудалены от кривой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]