
- •Расшифруйте понятия “протокол”, “интерфейс”. В чем разница между ними? Какие основные виды интерфейсов существуют у компьютерных программ согласно стандарта posix?
- •Что такое ядро ос? Какие особенности его работы по сравнению с другими программами? Какие архитектуры ос бывают? в чем их преимущества и недостатки
- •Что такое виртуальная машина? Для каких целей она может служить? Какие типы виртуальных машин бывают?
- •Какие принципиальные отличия языка Ассемблера от высокоуровневых языков программирования?
- •Перечислите форматы исполняемых файлов. Опишите и охарактеризуйте формат elf.
- •Из каких этапов состоит создание исполняемой программы из исходного кода? Опишите их суть. Для каких сред исполнения может создаваться программа?
- •Перечислите этапы загрузки компьютера от включения питания до активизации gui или cli ос. Охарактеризуйте роль каждого из них.
- •Что такое процесс ос? Чем он отличается от программы? Что такое нить? Какие есть подходы к созданию многонитевых (многопоточных программ)?
- •Опишите жизненный цикл процесса. Какие требования обычно выдвигаются к алгоритмам планирования процессов?
- •Перечислите основные алгоритмы планирования процессов. Сформулируйте алгоритм “Карусель” (Round Robin) и охарактеризуйте его.
- •Перечислите основные алгоритмы планирования процессов. Сформулируйте “справедливый” алоритм планирования и охарактеризуйте его.
- •Перечислите основные алгоритмы планирования процессов. Сформулируйте и охарактеризуйте алгоритм “Очередь” (fifo). В каких системах он может применяться на практике?
- •Перечислите алгоритмы планирования процессов. Сформулируйте и охарактеризуйте алгоритм “Многоуровневые очереди с обратной связью”. В чем его преимущества и недостатки?
- •В чем разница между статическими и динамическими алгоритмами планирования процессов? Приведите минимум 2 примера каждого из них.
- •2 Примера каждого из них:
- •Назовите и кратко опишите существующие способы синхронизации многопоточных приложений.
- •Что такое критическая область процесса? Назовите прнципы разработки многопоточных программ, которые позволят избежать для них попадания в тупики.
- •Что представляет из себя примитив синхронизации “Семафор”? Опишите его интерфейс.
- •Что представляет из себя примитив синхронизации “Монитор”? Опишите его интерфейс.
- •Какие инструкции аппаратной синхронизации вы знаете? Приведите 2 примера, как на их основе можно построить различные примитивы синхронизации (условные переменные, семафоры, …).
- •Перечислите разные способы синхронизации работы многопоточных программ. Перечислите и охарактеризуйте проблемные ситуации, которые могут возникать в случае конкуренции за ресурсы между нитями.
- •Что такое мертвый замок (deadlock)? Сформулируйте требования к многопоточным программам, при соблюдении которых они гарантированно смогут избежать мертвых замков.
- •Опишите подходы, которые позволяют избежать мертвых замков в программах, которые используют блокировки с помощью замков.
- •Обнаружение взаимных блокировок
- •Что такое оптимистическое и пессимистическое блокирование? в каких случаях какое предпочтительнее?
- •Что такое программная транзакционная память (stm)? Какие свойства могут приобрести программы, которые ее используют?
- •Что такое конвейер (pipe)? Что такое именованный конвейер? Как эти объекты используются для взаимодействия программ?
- •Что такое фрагментация? Какие виды фрагментации бывают? Какие виды фрагментации проявляются в 3 основных схемах размещения файлов?
- •Опишите страничную и сегментную организацию виртуальной памяти. В чем преимущества и недостатки каждой из них?
- •Страничная организация памяти. Виртуальная память.
- •Нарисуйте обобщенную структуру программы в памяти. Каким образом на нее может повлиять использование сегментной модели виртуальной памяти?
- •Сформулируйте алгоритм выбора кандидата на удаление из кэша “Часы”. В чем его преимущества и недостатки?
- •Сформулируйте алгоритм выбора кандидата на удаление из кэша “Наименее недавно использовавшийся” (lru). В чем его преимущества и недостатки?
- •Примеры
- •Сформулируйте алгоритм выбора кандидата на удаление из кэша “Второй шанс”. В чем его преимущества и недостатки?
- •Управление свободным и занятым дисковым пространством
- •39. Что такое файловая система на основе журнала? Чем она отличается от классической файловой системы, какие у нее есть преимущества и недостатки, основные проблемы и особенности реализации?
- •40. Перечислите и кратко охарактеризуйте принципы, на которых должны строится безопасные системы.
- •41. Охарактеризуйте подходы к учету прав доступа на основе списков контроля доступа (acl) и способностей (capabilities). В чем преимущества и недостатки каждого из них?
- •43. Опишите Socket api ос. В чем его особенности, сильные и слабые стороны?
- •44. Опишите технологию удаленного вызова процедур (rpc). Сравните 2 подхода к предаче данных в ней. Какие уровни Интернет-стека участвуют в организации распределенного взаимодействия в ней?
- •45. Опишите сетевой стек tcp/ip. Чем он отличается от эталонной модели osi? Какой уровень к tcp/ip стеку добавляет rpc-приложение?
- •46. Опишите технологию удаленного вызова процедур (rpc). Сравните 2 подхода к предаче данных в ней. Какие уровни участвуют в организации распределенного взаимодействия в ней?
- •Опишите сетевой стек tcp/ip. Чем он отличается от эталонной модели osi? Какой уровень к tcp/ip стеку добавляет rpc-приложение?
- •Опишите клиент-серверную архитектуру распределенного приложения. Какое api ос лежит в ее основе? Какие еще уровни участвуют в организации распределенного взаимодействия в ней?
Сформулируйте алгоритм выбора кандидата на удаление из кэша “Второй шанс”. В чем его преимущества и недостатки?
Сегментированный LRU (Segmented LRU или SLRU): "SLRU-кэш делится на два сегмента. пробный сегмент и защищенный сегмент. Строки в каждом сегменте упорядочены от частоиспользуемых к наименее используемым. Данные при промахах добавляются в кэш, причем в область последних использованных элементов пробного сегмента. Данные при попаданиях убираются где бы они не располагались и добавляются в область частоиспользуемых элементов защищенного сегмента. К строкам защищенного сегмента обращения таким образом происходят по крайней мере дважды. Защищенный сегмент ограничен. Такой перенос строки из пробного сегмента в защищенный сегмент может вызвать перенос последней использованной (LRU) строки в защищенном сегменте в MRU-область пробного сегмента, давая этой линии второй шанс быть использованной перед вытеснением. Размер защищенного сегмента - SLRU-параметр, который меняется в зависимости от схемы работы ввода-вывода. Всякий раз когда данные должны быть вытеснены из кэша, строки запрашиваются из LRU-конца пробного сегмента.[3]"
В чем разница между копированием при записи (copy-on-write) и изменением на месте (in-lace modification)? В чем преимущества и недостатки этих способов изменения хранимых данных? В каких случаях эффективно применять каждый из них?
Механизм копирования при записи (англ. Copy-On-Write, COW) используется для оптимизации многих процессов, происходящих в операционной системе, таких как например работа с памятью или файлами на диске (пример — ext3cow).
Главная идея Copy-on-write — при копировании областей данных создавать реальную копию только когда ОС обращается к этим данным с целью записи.
Например, при работе unix-функции fork() вместо копирования выполняетcя отображение образа памяти материнского процесса в адресное пространство дочернего процесса, после чего ОС запрещает обоим процессам запись в эту память. Попытка записи в отображённые страницы вызывает исключение (exception), после которого часть данных будет скопирована в новую область.
Копирования при записи (иногда именуемые "Корова": COW (Copy On Write)) является стратегия оптимизации, используемых в программировании. Основная идея в том, что если несколько абонентов спросить за ресурсы, которые изначально неотличимо, вы можете дать им указателей на тот же ресурс. Эта функция может сохраняться, пока абонент пытается изменить его "копия" этого ресурса, на котором точка истинного частного копия создается в целях предотвращения изменения становятся видимыми для всех остальных. Все это происходит незаметно для абонентов. Основным преимуществом является то, что если абонент никогда не делает каких-либо изменений, ни частные копии необходимости когда-либо созданных.
КОРОВА концепция используется также в поддержании мгновенных снимков на серверах баз данных, как Microsoft SQL Server 2005. Мгновенные снимки сохранить статическое представление о базе данных по хранению предварительные изменения копии данных при подстилающих данные обновляются. Мгновенные снимки, используемые для тестирования использует или момент зависят от докладов и не должна использоваться для замены резервных копий.
???? in-lace modification - ????
36. Назовите способы учета свободного места на диске, кратко опишите их. В каких файловых системах какие способы используются?
Дисковое пространство, не выделенное ни одному файлу, также должно быть управляемым. В современных ОС используется несколько способов учета используемого места на диске. Рассмотрим наиболее распространенные.
Учет при помощи организации битового вектора
Часто список свободных блоков диска реализован в виде битового вектора (bit map или bit vector). Каждый блок представлен одним битом, принимающим значение 0 или 1, в зависимости от того, занят он или свободен. Например, 00111100111100011000001 ... .
Главное преимущество этого подхода состоит в том, что он относительно прост и эффективен при нахождении первого свободного блока или n последовательных блоков на диске. Многие компьютеры имеют инструкции манипулирования битами, которые могут использоваться для этой цели. Например, компьютеры семейств Intel и Motorola имеют инструкции, при помощи которых можно легко локализовать первый единичный бит в слове.
Описываемый метод учета свободных блоков используется в Apple Macintosh.
Несмотря на то что размер описанного битового вектора наименьший из всех возможных структур, даже такой вектор может оказаться большого размера. Поэтому данный метод эффективен, только если битовый вектор помещается в памяти целиком, что возможно лишь для относительно небольших дисков. Например, диск размером 4 Гбайт с блоками по 4 Кбайт нуждается в таблице размером 128 Кбайт для управления свободными блоками. Иногда, если битовый вектор становится слишком большим, для ускорения поиска в нем его разбивают на регионы и организуют резюмирующие структуры данных, содержащие сведения о количестве свободных блоков для каждого региона.
Учет при помощи организации связного списка
Другой подход - связать в список все свободные блоки, размещая указатель на первый свободный блок в специально отведенном месте диска, попутно кэшируя в памяти эту информацию.
Подобная схема не всегда эффективна. Для трассирования списка нужно выполнить много обращений к диску. Однако, к счастью, нам необходим, как правило, только первый свободный блок.
Иногда прибегают к модификации подхода связного списка, организуя хранение адресов n свободных блоков в первом свободном блоке. Первые n-1 этих блоков действительно используются. Последний блок содержит адреса других n блоков и т. д.
Существуют и другие методы, например, свободное пространство можно рассматривать как файл и вести для него соответствующий индексный узел.
Опишите на примере непрерывную схему размещения файлов. Какие ее преимущества и недостатки? В каких случаях она используется (и в каких файловых системах)?
Непрерывное размещение - простейший вариант физической организации (рисунок 1, а), при котором файлу предоставляется последовательность блоков диска, образующих единый сплошной участок дисковой памяти. Для задания адреса файла в этом случае достаточно указать только номер начального блока. Другое достоинство этого метода - простота. Но имеются и два существенных недостатка. Во-первых, во время создания файла заранее не известна его длина, а значит не известно, сколько памяти надо зарезервировать для этого файла, во-вторых, при таком порядке размещения неизбежно возникает фрагментация, и пространство на диске используется не эффективно, так как отдельные участки маленького размера (минимально 1 блок) могут остаться не используемыми.
непрерывная (магнитные и оптические носители)
+ легко реализовать
+ самая лучшая производительность
- фрагментация
- необходимость реализовать учет дырок
- проблемы с ростом размера файла, записанного в дырку
37. Опишите схему размещения файлов при помощи связного списка. Какие ее преимущества и недостатки? Какая ее основная практическая реализация, и какую проблему эта реализация решает? В каких файловых системах это используется?
Методы размещения файлов
Смежное размещение. Термин метод размещения означает метод, с помощью которого размещаются блоки файла во внешней памяти. Различаются следующие основные методы размещения файлов:
Смежное размещение
Ссылочное размещение
Индексированное размещение.
При смежном размещении каждый файл занимает набор смежных блоков на диске. Преимущество данного метода - простота: требуется хранить только одну ссылку (номер блока) и длину (число блоков). Другим преимуществом является возможность произвольного доступа.
Недостатки данного метода следующие:
возможны потери дисковой памяти из-за фрагментации (метод аналогичен общей задаче динамического распределения памяти, рассмотренной ранее);
невозможность увеличения размера файла.
Ссылочное размещение файла
При ссылочном размещении каждый файл представляется в виде связанного списка дисковых блоков, которые могут быть разбросаны по диску. Преимущества данного метода:
Простота – необходимо хранить только начальный адрес;
Отсутствие потерь дискового пространства; система хранит списки свободной памяти.
Недостаток - отсутствие произвольного доступа: для доступа к данным файла в общем случае необходимо выполнить просмотр части списка блоков файла.
При ссылочном размещении адрес по файлу представляется в виде (Q, R), где Q – номер блока, к которому выполняется доступ, в связанном списке блоков, представляющем файл; R - cмещение в блоке.
К файловым системам, использующим ссылочное размещение, относится файловая система File-allocation table (FAT), используемая в MS-DOS и OS/2 и до сих пор используемая в Windows