
- •Расшифруйте понятия “протокол”, “интерфейс”. В чем разница между ними? Какие основные виды интерфейсов существуют у компьютерных программ согласно стандарта posix?
- •Что такое ядро ос? Какие особенности его работы по сравнению с другими программами? Какие архитектуры ос бывают? в чем их преимущества и недостатки
- •Что такое виртуальная машина? Для каких целей она может служить? Какие типы виртуальных машин бывают?
- •Какие принципиальные отличия языка Ассемблера от высокоуровневых языков программирования?
- •Перечислите форматы исполняемых файлов. Опишите и охарактеризуйте формат elf.
- •Из каких этапов состоит создание исполняемой программы из исходного кода? Опишите их суть. Для каких сред исполнения может создаваться программа?
- •Перечислите этапы загрузки компьютера от включения питания до активизации gui или cli ос. Охарактеризуйте роль каждого из них.
- •Что такое процесс ос? Чем он отличается от программы? Что такое нить? Какие есть подходы к созданию многонитевых (многопоточных программ)?
- •Опишите жизненный цикл процесса. Какие требования обычно выдвигаются к алгоритмам планирования процессов?
- •Перечислите основные алгоритмы планирования процессов. Сформулируйте алгоритм “Карусель” (Round Robin) и охарактеризуйте его.
- •Перечислите основные алгоритмы планирования процессов. Сформулируйте “справедливый” алоритм планирования и охарактеризуйте его.
- •Перечислите основные алгоритмы планирования процессов. Сформулируйте и охарактеризуйте алгоритм “Очередь” (fifo). В каких системах он может применяться на практике?
- •Перечислите алгоритмы планирования процессов. Сформулируйте и охарактеризуйте алгоритм “Многоуровневые очереди с обратной связью”. В чем его преимущества и недостатки?
- •В чем разница между статическими и динамическими алгоритмами планирования процессов? Приведите минимум 2 примера каждого из них.
- •2 Примера каждого из них:
- •Назовите и кратко опишите существующие способы синхронизации многопоточных приложений.
- •Что такое критическая область процесса? Назовите прнципы разработки многопоточных программ, которые позволят избежать для них попадания в тупики.
- •Что представляет из себя примитив синхронизации “Семафор”? Опишите его интерфейс.
- •Что представляет из себя примитив синхронизации “Монитор”? Опишите его интерфейс.
- •Какие инструкции аппаратной синхронизации вы знаете? Приведите 2 примера, как на их основе можно построить различные примитивы синхронизации (условные переменные, семафоры, …).
- •Перечислите разные способы синхронизации работы многопоточных программ. Перечислите и охарактеризуйте проблемные ситуации, которые могут возникать в случае конкуренции за ресурсы между нитями.
- •Что такое мертвый замок (deadlock)? Сформулируйте требования к многопоточным программам, при соблюдении которых они гарантированно смогут избежать мертвых замков.
- •Опишите подходы, которые позволяют избежать мертвых замков в программах, которые используют блокировки с помощью замков.
- •Обнаружение взаимных блокировок
- •Что такое оптимистическое и пессимистическое блокирование? в каких случаях какое предпочтительнее?
- •Что такое программная транзакционная память (stm)? Какие свойства могут приобрести программы, которые ее используют?
- •Что такое конвейер (pipe)? Что такое именованный конвейер? Как эти объекты используются для взаимодействия программ?
- •Что такое фрагментация? Какие виды фрагментации бывают? Какие виды фрагментации проявляются в 3 основных схемах размещения файлов?
- •Опишите страничную и сегментную организацию виртуальной памяти. В чем преимущества и недостатки каждой из них?
- •Страничная организация памяти. Виртуальная память.
- •Нарисуйте обобщенную структуру программы в памяти. Каким образом на нее может повлиять использование сегментной модели виртуальной памяти?
- •Сформулируйте алгоритм выбора кандидата на удаление из кэша “Часы”. В чем его преимущества и недостатки?
- •Сформулируйте алгоритм выбора кандидата на удаление из кэша “Наименее недавно использовавшийся” (lru). В чем его преимущества и недостатки?
- •Примеры
- •Сформулируйте алгоритм выбора кандидата на удаление из кэша “Второй шанс”. В чем его преимущества и недостатки?
- •Управление свободным и занятым дисковым пространством
- •39. Что такое файловая система на основе журнала? Чем она отличается от классической файловой системы, какие у нее есть преимущества и недостатки, основные проблемы и особенности реализации?
- •40. Перечислите и кратко охарактеризуйте принципы, на которых должны строится безопасные системы.
- •41. Охарактеризуйте подходы к учету прав доступа на основе списков контроля доступа (acl) и способностей (capabilities). В чем преимущества и недостатки каждого из них?
- •43. Опишите Socket api ос. В чем его особенности, сильные и слабые стороны?
- •44. Опишите технологию удаленного вызова процедур (rpc). Сравните 2 подхода к предаче данных в ней. Какие уровни Интернет-стека участвуют в организации распределенного взаимодействия в ней?
- •45. Опишите сетевой стек tcp/ip. Чем он отличается от эталонной модели osi? Какой уровень к tcp/ip стеку добавляет rpc-приложение?
- •46. Опишите технологию удаленного вызова процедур (rpc). Сравните 2 подхода к предаче данных в ней. Какие уровни участвуют в организации распределенного взаимодействия в ней?
- •Опишите сетевой стек tcp/ip. Чем он отличается от эталонной модели osi? Какой уровень к tcp/ip стеку добавляет rpc-приложение?
- •Опишите клиент-серверную архитектуру распределенного приложения. Какое api ос лежит в ее основе? Какие еще уровни участвуют в организации распределенного взаимодействия в ней?
Что такое виртуальная машина? Для каких целей она может служить? Какие типы виртуальных машин бывают?
Виртуальная машина (англ. virtual machine) — программная или аппаратная среда, исполняющая некоторый код (например, байт-код, шитый код, p-код или машинный код реального процессора), или спецификация такой системы (например: «виртуальная машина языка программирования Си»). Зачастую виртуальная машина эмулирует работу реального компьютера. На виртуальную машину, так же как и на реальный компьютер, можно устанавливать операционную систему, у виртуальной машины также есть BIOS, оперативная память, жёсткий диск (выделенное место на жёстком диске реального компьютера), могут эмулироваться периферийные устройства. На одном компьютере может функционировать несколько виртуальных машин.
Виртуальные машины могут использоваться:
Для защиты информации и ограничения возможностей процессов (см.: песочница).
Для исследования производительности ПО или новой компьютерной архитектуры.
Для эмуляции различных архитектур (например, эмулятор игровой приставки).
С целью оптимизации использования ресурсов мейнфреймов и прочих мощных компьютеров (см., например: IBM eServer).
Для моделирования информационных систем с клиент-серверной архитектурой на одной ЭВМ (эмуляция компьютерной сети с помощью нескольких виртуальных машин).
Для упрощения управления кластерами — виртуальные машины могут просто мигрировать с одной физической машины на другую во время работы.
Эмуля́ция (англ. emulation) — воспроизведение программными или аппаратными средствами либо их комбинацией работы других программ или устройств.[1]
В зависимости от эмуляции виртуальные машины деляться на 3 группы:
виртуальные машины с аппаратной, программно-аппаратной эмуляцией, программной эмуляцией
Какие принципиальные отличия языка Ассемблера от высокоуровневых языков программирования?
Язык ассемблера (автокод) — язык программирования низкого уровня. В отличие от языка машинных кодов, позволяет использовать более удобные для человека мнемонические (символьные) обозначения команд. При этом для перевода с языка ассемблера в понимаемый процессором машинный код требуется специальная программа, называемая ассемблером.
Язык ассемблера — язык программирования "низкого уровня". В отличие от языка машинных кодов позволяет использовать более удобные для человека мнемонические (символьные) обозначения команд. При этом для перевода с языка ассемблера в понимаемый процессором машинный код требуется специальная программа, также называемая ассемблером.
Ассемблер — родной язык компьютера. Можно сказать, что компьютер «думает» на ассемблере. Поэтому программы, написанные на других языках, таких как Си, нужно сначала перевести на ассемблер, чтобы компьютер их понял и смог исполнить.
Когда мы говорим о компьютере, выполняющем программы, то прежде всего имеем в виду его сердце — процессор — специальную микросхему, которая исполняет команды, часто называемые инструкциями, и хранит результаты их работы в специальных регистрах. Так, например, выполнение инструкций процессора
mov eax, 2
add eax, 3
приводит к тому, что в регистре еах оказывается число 5. Первая инструкция mov eax, 2 посылает в регистр еах число 2. Вторая инструкция add eax, 3, выполняемая вслед за первой, прибавляет к содержимому регистра еах число 3.
Байт-код или байтко́д (англ. byte-code), иногда также используется термин псевдоко́д — машинно-независимый код низкого уровня, генерируемый транслятором и исполняемый интерпретатором. Большинство инструкций байт-кода эквивалентны одной или нескольким командам ассемблера. Трансляция в байт-код занимает промежуточное положение между компиляцией в машинный код и интерпретацией.
Байт-код называется так, потому что длина каждого кода операции — один байт, но длина кода команды различна. Каждая инструкция представляет собой однобайтовый код операции от 0 до 255, за которым следуют такие параметры, как регистры или адреса памяти. Это в типичном случае, но спецификация байт-кода значительно различается в разных языках.