
- •1.1. Предмет и содержание дисциплины
- •1.2. Виды и структурные единицы экономической информации
- •1.3. Функции и классификация экономических информационных систем
- •1.4. Информационное обеспечение эис, его свойства
- •1.5. Информационная база эис, ее внутримашинная и внемаш. Части
- •1.6. Документы, их виды, структура
- •1.7. Понятие классификации инфрмации. Системы классификации.
- •1.8. Классификация и кодирование информации
- •1..9. Классификация и кодирование информации
- •1..10. Файловая организация данных, ее недостатки
- •1.11. Понятие бд. Преимущества бд
- •1.12. Приложения бд. Компоненты бд
- •2.1. Трехуровневая модель организации баз данных
- •2.2. Понятие модели данных. Иерархические модель ДаНных
- •2.3. Сетевая модель, ее недостатки и дост.
- •2.4.Реляционная модель. Базовые понятия реляционной модели
- •2.5. Связи между данными
- •2.6.Реляционная целостность:целостность отношений,ссылочная целостность
- •2.7. Операции в реляционной алгебры
- •2.8.Достоинства и недост.Рел.Модели.
- •2.9. Постреляционная модель, недост. И дост.
- •2.10. Объектно-ориентированная модель данных
- •2.11.Достоинства и недост. Объектно-ориент. Модели данных
- •2.12. Объектно-реляционная модель,дост и недост.
- •2.13. Многомерная модель данных, еебазовые понятия.
- •2.14.Поликуб.И гиперкуб. Орган. Данных в мног. Моели
- •2.15. Дост. И недост. Многомер.Модели данных
- •3.1. 3.1Объемы современных баз данных и устройства для их размещения
- •3.3. Функции субд, Функции Диспетчера файлов и Диспетчера дисков
- •3.4. Индексы и их использование для ускорения извлечения данных
- •3.5. Особенности технологии хеширования
- •3.7.Иерархическое сжатие
- •3.8. Кодирование Хаффмана
- •4.1.Понятие проект. Требования, предъявляемые к базе данных
- •4.2. Этапы жизненного цикла базы данных
- •4.3.Назначение модели er Модель "сущность–связь"
- •4.4. Типы связи.Их представл. На er
- •4.6. Общие сведения о Case-средствах
- •4.7.Правила преобраз. Er в реляц. 1:1,1:м,м:и
- •4.8. Нормализация таблиц
- •4.9. Концептуального проектирование
- •4.10. Логическое проектирование
- •4.11.Физическое проектирование
- •5.1. Понятие субд. Архит-ра субд
- •5.2. Классификация субд
- •5.3. Функциональные возможности и производительность субд
- •5.4. Режимы работы пользователя с субд
- •5.7. Превращение субд в системы упр.Базами знаний
- •6.2. Характеристика объектов бд
- •6.3. Инструментальные средства для создания бд.
- •6.4. Пользовательский интерфейс access. Справочная система
- •6.5. Настройка рабочей среды в access
- •6.6. Типы данных, обраб. В Асcess
- •6.7. Элементы выражения.Построит. Выраж.
- •7.2. Установка связи между таблицами
- •7.3 Корректировка базы данных
- •7.4 Работа в режиме таблицы
- •7.6 Структура окна конструктора
- •7.7. Создание запроса выбора
- •7.8 Создание перекрестного запроса
- •7.9. Создание запросов на внесение изменений в бд
- •7.10. Выполнение и сохранение запроса
- •7.11 Способы создания форм.
- •7.12 Назначение разделов окна Конструктора форм.
- •7.13 Элементы управления, используемые при конструировании
- •7.14 Конструирование форм: со списком, с полем со списком, с вкладками, с диаграммой.
- •7.15 Конструирование составной формы
- •7.16.Работа с базой данных по форме
- •7.17. Способы создания отчетов
- •7.18. Назначение разделов окна Конструктора.
- •7.19 Конструирование отчета с вычислениями в строках и общими итогами, частными итогами
- •7.20. Просмотр и печать отчета
- •7.21 Типы веб-сраниц
- •7.22 Сконструировать статическую веб-страницу
- •7.23 Кнструирование страницы доступа к данным с интерактивным отчетом
- •7.25 Понятие макроса. Класификаця макрокоманд
- •7.26 Классификация мкросов по структуре
- •7.27 События в exess. Макросы связаны с событиями
- •7.29 Конструирование макроса связанного с событием
- •8.1. Назначение, стандарты, достоин. Sql
- •8.2. Структура команды sql
- •8.3. Типы данных.Выражения вSql
- •8.4. Возможности языка sql
- •8.5.Условия целостности в субд. Понятие транзакции. Обраб.
- •8.6.Управление доступом к данным
- •8.7.Встраивание sql в прикладн. Прогр.
- •8.8. Диалекты языка sql в субд
- •9.1. Эволюция концепций обработки данных
- •9.3. Системы удаленной обработки
- •9.4. Архитектура файл/сервер и роль настольных субд в ней
- •9.5. Недостатки архитектуры файл/сервер
- •9.6. Достоинства и недостатки настольных субд
- •9.7 Дистанционка страница 32
- •9.8. Клиенты, серверы. Клиентские приложения, серверы бд
- •9.9 Архитектура клиент/сервер. Функции клиентского приложения и серверной субд.
- •9.10 Преимущества архитектуры клиент/сервер
- •9.11 Общие сведения о хранимых процедурах и триггерах
- •9.12. Характеристика серверов бд
- •9.13 Механизмы доступа к базам данных
- •9.18. Понятие и архитектура распределенной бд. Гомогенные и гетерогенные распределенные бд
- •9.19 Распределенная субд. Двенадцать правил к. Дейта
- •9.20 Обработка распределенных запросов
- •9.21. Преимущества и недостатки расубд
- •9.22. Обзор распределенных субд
- •10.1. Пользователи бд. Администратор бд,его функции
- •10.2. Актуальность защиты бд
- •10.3. Методы защиты бд: защита паролем, шифрование, разграничение прав доступа
- •10.4. Восстановление бд
- •10.5. Правовая охрана бд
- •10.9.Сжатие и восстановление
- •10.10 Репликация бд в access
- •10.11. Защита бд
4.8. Нормализация таблиц
Реляционная база данных считается эффективной, если она обладает приведенными ниже характеристиками.1. Минимизация избыточности данных. В базе данных присутствует избыточность, если одни и те же данные находятся в нескольких местах. Вследствие этого память компьютера используется неэкономно и времени на корректировку данных тратится больше. Примечание. Если таблица является объектом реляционной базы данных, то ее столбцы называются полями, а строки – записями.2. Минимальное использование отсутствующих значений (Null-значений). . Из-за неопределенности интерпретации Null-значений их использование желательно свести к минимуму.3. Предотвращение потери информации Минимизировать избыточность данных позволяет процесс, называемый нормализацией таблиц. Реляционная база данных считается эффективной, если все ее таблицы находятся как минимум в 3НФ. Приведение к 3НФ осуществляется, если есть основание для этого.Определение 1НФ:Таблица находится в 1НФ, если все ее поля содержат только простые неделимые значения.Но полученная таблица неэффективна, так как содержат много избыточной информации. Необходимо их привести к 2НФ.Определение 2НФТаблица находится в 2НФ, если она удовлетворяет требованиям 1НФ и неключевые поля функционально полно зависят от первичного ключа.Функциональная зависимость – это понятие, отображающее определенную семантическую связь между полями таблицы. Пусть (Х1, Х2,…,Хк) – множество полей, образующих первичный ключ.Неключевое поле А функционально полно зависит от первичного ключа, если:оно функционально зависит от первичного ключа, т.е. каждой комбинации значений полей первичного ключа соответствует одно и только одно значение поля А, что записывается(Х1, Х2,…,Хк)®Ане существует функциональной зависимости А ни от какого подмножества полей первичного ключа (в противном случае А находится в частичной функциональной зависимости от первичного ключа).Определение 3НФТаблица находится в 3НФ, если она удовлетворяет требованиям 2НФ и не содержит транзитивных зависимостей.Транзитивной зависимостью называется функциональная зависимость между неключевыми полями. Следовательно, нарушаются требования 3НФ.
4.9. Концептуального проектирование
Цель этапа концептуального проектирования – создание концептуальной модели данных исходя из представлений пользователей о предметной области. Для ее достижения выполняется ряд последовательных процедур.1. Определение сущностей и их документирование. Для идентификации сущностей определяются объекты, которые существуют независимо от других. Такие объекты являются сущностями. Каждой сущности присваивается осмысленное имя, понятное пользователям. Имена и описания сущностей заносятся в словарь данных. Если возможно, то устанавливается ожидаемое количество экземпляров каждой сущности.2. Определение связей между сущностями и их документирование. Определяются только те связи между сущностями, которые необходимы для удовлетворения требований к проекту базы данных. Устанавливается тип каждой из них. Выявляется класс принадлежности сущностей. Связям присваиваются осмысленные имена, выраженные глаголами. 3. Создание ER-модели предметной области. Для представления сущностей и связей между ними используются ER-диаграммы. На их основе создается единый наглядный образ моделируемой предметной области – ER-модель предметной области.4. Определение атрибутов и их документирование. Выявляются все атрибуты, описывающие сущности созданной ER-модели. Каждому атрибуту присваивается осмысленное имя, понятное пользователям. О каждом атрибуте в словарь данных помещаются следующие сведения:имя атрибута и его описание;тип и размерность значений;значение, принимаемое для атрибута по умолчанию (если такое имеется);может ли атрибут иметь Null-значения;является ли атрибут составным, и если это так, то из каких простых атрибутов он состоит. является ли атрибут расчетным, и если это так, то как вычисляются его значения.5. Определение значений атрибутов и их документирование. Для каждого атрибута сущности, участвующей в ER-модели, определяется набор допустимых значений и ему присваивается имя. 6. Определение первичных ключей для сущностей и их документирование. На этом шаге руководствуются определением первичного ключа – как атрибута или набора атрибутов сущности, позволяющего уникальным образом идентифицировать ее экземпляры. Сведения о первичных ключах помещаются в словарь данных.7. Обсуждение концептуальной модели данных с конечными пользователями.Концептуальная модель данных представляется ER-моделью с сопроводительной документацией, содержащей описание разработанной модели данных.