
- •Содержание пояснительная записка
- •Введение в эконометрику
- •Тема 1. Парная регрессия Постановка задачи
- •Технология вычислений в ms Excel для построения и анализа парной регрессии
- •2. Спецификация: выбор в общем виде формулы связи между переменными, обозначающими выделенные факторы
- •3. Параметризация модели: нахождение оценок значений параметров выбранной функции связи
- •4. Верификация модели: проверка адекватности модели
- •4.1. Общее качество уравнения: проверка значимости коэффициента детерминации
- •4.3. Значимость коэффициентов регрессии: проверка соответствующих гипотез
- •4.4. Проверка статистических свойств остатков (качества оценок коэффициентов регрессии)
- •4.4.1. Центрированность остатков
- •4.4.2. Гомоскедастичность (гетероскедастичность) остатков
- •4.4.3. Автокорреляция остатков
- •4.5. Анализ свойств модели: средний коэффициент эластичности
- •5. Прогнозирование
- •Эконометрический анализ построения модели парной регрессии
- •1. Постановочный этап
- •2. Спецификация модели
- •3. Параметризация модели
- •4. Верификация модели
- •4.1. Общее качество уравнения
- •4.2. Нормальность распределения остатков
- •4.3. Значимость коэффициентов регрессии
- •4.4. Проверка статистических свойств остатков (качества оценок коэффициентов регрессии)
- •4.4.1. Центрированность остатков
- •4.4.2. Гомоскедастичность (гетероскедастичность) остатков
- •4.4.3. Автокорреляция остатков
- •Ввп График остатков
- •4.5. Анализ свойств модели: средний коэффициент эластичности
- •5. Прогнозирование
- •Вопросы для самоконтроля
- •Индивидуальные задания
- •Тема 2. Множественная регрессия Постановка задачи
- •Технология вычислений в ms Excel для построения и анализа линейной множественной регрессии
- •1. Постановочный этап
- •2. Спецификация
- •3. Параметризация модели
- •4. Верификация модели
- •4.1. Общее качество уравнения
- •4.2. Нормальность распределения остатков
- •4.3. Значимость коэффициентов регрессии
- •4.4. Проверка статистических свойств остатков (качества оценок коэффициентов регрессии)
- •4.4.1. Центрированность остатков
- •4.4.2. Гомоскедастичность (гетероскедастичность) остатков
- •4.4.3. Автокорреляция остатков
- •4.5. Анализ свойств модели
- •4.5.1. Мультиколлинеарность факторов: выявление зависимости объясняющих факторов
- •4.5.2. Эластичность
- •4.5.3. Частные коэффициенты корреляции
- •5. Прогнозирование
- •Эконометрический анализ построения модели множественной регрессии
- •1. Постановочный этап
- •2. Спецификация модели
- •3. Параметризация модели
- •4. Верификация модели
- •4.1. Общее качество уравнения
- •4.2. Нормальность распределения остатков
- •4.3. Значимость коэффициентов регрессии
- •4.4. Проверка статистических свойств остатков (качества оценок коэффициентов регрессии)
- •4.4.1. Центрированность остатков
- •4.4.2. Гомоскедастичность (гетероскедастичность) остатков
- •4.4.3. Автокорреляция остатков
- •4.5. Анализ свойств модели
- •4.5.1. Мультиколлинеарность факторов
- •4.5.2. Эластичность
- •4.5.3. Частные коэффициенты корреляции: целесообразность включения в модель факторов
- •5. Прогнозирование
- •Вопросы для самоконтроля
- •Индивидуальные задания
- •Тема 3. Временные ряды Постановка задачи
- •Технология вычислений в ms Excel при построении модели временного ряда
- •1. Постановочный этап
- •2. Спецификация: определение вида аналитической модели вре- менного ряда
- •2.1. Анализ структуры временного ряда
- •2.1.1. Оценка наличия тенденции во временном ряде с помощью корреляционного поля
- •2.1.2. Оценка структуры временного ряда: наличие тренда, сезонности, цикличности, случайной компоненты – по автокорреляционной функции временного ряда и коррелограмме
- •4. Верификация
- •5. Прогнозирование
- •Эконометрический анализ построения модели временного ряда
- •1. Постановочный этап
- •2.1. Анализ структуры временного ряда
- •2.1.1. Оценка наличия тенденции во временном ряде с помощью корреляционного поля
- •2.1.2. Оценка структуры временного ряда: наличие тренда, сезонности, цикличности, случайной компоненты – по автокорреляционной функции временного ряда и коррелограмме
- •2.2. Определение вида модели (аддитивная или мультипликативная) по корреляционному полю
- •3. Аналитическое выравнивание временного ряда
- •3.1. Структурная стабильность временного ряда
- •3.2. Проведение аналитического выравнивания временного ряда
- •4. Верификация
- •5. Прогнозирование
- •Вопросы для самоконтроля
- •Индивидуальные задания
- •Тема 4. Зависимость переменных, заданных временными рядами Постановка задачи
- •Технология вычислений в ms Excel взаимосвязи двух временных рядов
- •Эконометрический анализ построения модели взаимосвязи двух временных рядов
- •Вопросы для самоконтроля
- •Индивидуальные задания
- •Тема 5. Системы взаимозависимых уравнений Постановка задачи
- •Технология вычислений в ms Excel для модели системы одновременных уравнений
- •Эконометрический анализ построения модели системы одновременных уравнений
- •Вопросы для самоконтроля
- •Индивидуальные задания
- •1. Постановочный этап
- •2. Спецификация модели
- •3. Параметризация модели
- •4. Верификация модели
- •5. Прогнозирование
- •Эконометрика и экономико-математические методы и модели Пособие для студентов экономических специальностей
- •246029, Г. Гомель, просп. Октября, 50.
- •2 46029, Г. Гомель, просп. Октября, 50.
3. Параметризация модели
-
Статистической оценкой параметра называется его приближенное значение, полученное на основе выборочных данных. Для получения точечных оценок параметров уравнения парной линейной регрессии применяют метод наименьших квадратов (МНК). В соответствии с МНК минимизируется сумма квадратов разностей между фактическими и расчетными значениями зависимой переменной. Оценки неизвестных параметров находятся из системы нормальных уравнений, полученной методом дифференциального исчисления.
Для расчета интервальных оценок (доверительных интервалов) параметров регрессии определяются предельные ошибки для каждого показателя:
где
– стандартные ошибки коэф- фициентов регрессии;
– стандартная ошибка регрессии, которая служит мерой разброса зависимой переменной вокруг линии регрессии;
– критическая точка распределения Стьюдента для заданного уровня значимости и числа степеней свободы v = n – 2. Доверительные интервалы имеют вид: для b0 – (
),
– (
), где центр интервала равен точечной оценке, концы интервалов получены прибавлением и вычитанием произведения стандартной ошибки коэффициента на критическое значение t-статистики.
Доверительный интервал с вероятностью 0,95 содержит истинное значение свободного члена уравнения регрессии. Поэтому любое значение из этого интервала может служить оценкой параметра. Если в границы доверительного интервала попадает ноль, т. е. нижняя граница отрицательна, а верхняя – положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.
В результате проведения регрессионного анализа на листе «Регрессия» в третьей таблице получены точечные и интервальные оценки неизвестных параметров (таблица 6).
Таблица 6 – Статистика коэффициентов регрессии
|
Коэффи- циенты |
Стандарт- ная ошибка |
t-статис- тика |
P-Значение |
Нижние 95% |
Верхние 95% |
Y-пересе- чение |
–73,25 |
16,03 |
–4,57 |
0,000 24 |
–106,93 |
–39,56 |
ВВП |
0,26 |
0,01 |
25,93 |
0,000 00 |
0,24 |
0,28 |
|
|
tкр |
2,10 |
|
|
|
Точечная оценка параметра b0 равна –73,25. Интервальная оценка равна (–106,93; –39,56). Доверительный интервал с вероятностью 0,95 содержит истинное значение свободного члена уравнения регрессии. Поэтому любое значение из этого интервала может служить оценкой параметра b0.
Точечная оценка параметра b1 равна 0,24. Интервальная оценка равна (0,24; 0,28). Доверительный интервал с вероятностью 0,95 содержит истинное значение коэффициента при переменной x уравнения регрессии. Поэтому любое значение из этого интервала может служить оценкой параметра b1.
Таким образом, уравнение регрессии имеет вид
y = –73,25 + 0,24x.
Случайная переменная отсутствует в уравнении, так как коэффициенты регрессии имеют случайный характер, т. е. неучтенные факторы повлияли на их значение при применении МНК.