
- •1. Систематика микроорганизмов.
- •2.Строение клеток прокариотов и эукариотов
- •3.Основные морфологические формы бактерий
- •Клеточная стенка
- •5.Риккетсии
- •6.Классификация бактерий по типам питания, источникам энергии и электронам.
- •7.Основные принципы культивирования бактерий
- •8.Энергетический метаболизм (распад сложных веществ)
- •10.Экология вирусов
- •11.Основные свойства вирусов
- •12.Репродукция вирусов
- •13.Взаимодействие вирусов с клеткой хозяина
- •14.Вирусы бактерий (бактериофаги)
- •15.Изменчивость у бактерий
- •16.Организация наследственного материала бактерий
- •17.Химиотерапевтические препараты
- •18.Антибиотики
- •19.Лекарственная резистентность
- •1.Экология микроорганизмов.
- •2.Инфекционный процесс
- •3.Патогенность и вирулентность
- •6.Культуральный метод диагностики инфекций
- •7.Влияние факторов окружающей
- •8.Грибы
- •9.Размножение грибов
- •Вегетативное размножение
- •Общая информация
- •Заражение кандидозом
- •Кандидоз слизистой оболочки рта (молочница)
- •Кандидоз кишечника
- •10.Плесневые грибы́
- •11.Дрожжи
- •13.Нормальная микрофлора организма
- •14.Дисбактериоз
- •19.Иммунитет
- •20.Антигены
- •21.Антигены
- •22.Антитела
- •23.Характеристика основных классов иммуноглобулинов.
- •25.Иммунный ответ
- •26.Далее иммунный ответ возможен в виде по одного из трех вариантов:
- •27.Механизмы противоинфекционного иммунитета
- •28.Специфическая профилактика
- •Биосинтетические вакцины
- •29.Существует ряд типов вакцин
- •Мукозальные вакцины
- •30.Серотерапия
- •25.Фитопатогенная флора
- •26.Микрофлора лекарственного сырья
- •27.Опухолевый процесс растений
- •28.Фитопатогенные вирусы
- •29.Нормальная микрофлора растений
- •30.Грибы — возбудители болезней растений
- •31.Источники загрязнения лекарственных средств
7.Основные принципы культивирования бактерий
В лабораторных условиях микроорганизмы выращивают на питательных средах, которые должны быть: 1. Питательность. Бактерии должны содержать все необходимые питательные вещества.
2. Изотоничность. Бактерии должны содержать набор солей для поддержания осмотического давления, определенную концентрацию хлорида натрия.
3. Оптимальный рН (кислотность) среды. Кислотность среды обеспечивает функционирование ферментов бактерий; для большинства бактерий составляет 7,2–7,6.
4. Оптимальный электронный потенциал, свидетельствующий о содержании в среде растворенного кислорода. Он должен быть высоким для аэробов и низким для анаэробов.
5. Прозрачность (чтобы был виден рост бактерий, особенно для жидких сред).
6. Стерильность.
Классификация питательных сред.
1. По происхождению: естественные (молоко, желатин, картофель и др.); искусственные – среды, приготовленные из специально подготовленных природных компонентов (пептона, аминопептида, дрожжевого экстракта и т. п.); синтетические – среды известного состава, приготовленные из химически чистых неорганических и органических соединений.
2. По составу: простые – мясопептонный агар, мясопептонный бульон; сложные – это простые с добавлением дополнительного питательного компонента (кровяного, шоколадного агара): сахарный бульон, желчный бульон, сывороточный агар, желточно-солевой агар, среда Китта—Тароцци.
3. По консистенции: твердые (содержат 3–5 % агар-агара); полужидкие (0,15—0,7 % агар-агара); жидкие (не содержат агар-агара).
4. По назначению: общего назначения – для культивирования большинства бактерий (мясопептонный агар, мясопептонный бульон, кровяной агар); специального назначения:
а) элективные – среды, на которых растут бактерии только одного вида (рода), а род других подавляется (щелочной бульон, 1 %-ная пептонная вода, желточно-солевой агар, казеиново-угольный агар и др.); б) дифференциально-диагностические – среды, на которых рост одних видов бактерий отличается от роста других видов по тем или иным свойствам, чаще биохимическим (среда Эндо, Левина, Гиса, Плоскирева и др.);в) среды обогащения – среды, в которых происходит размножение и накопление бактерий-возбудителей какого-либо рода или вида (селенитовый бульон).
8.Энергетический метаболизм (распад сложных веществ)
Особенности метаболизма у бактерий:
1) многообразие используемых субстратов;
2) интенсивность процессов метаболизма;
3) направленность всех процессов метаболизма на обеспечение процессов размножения;
4) преобладание процессов распада над процессами синтеза;
5) наличие экзо– и эндоферментов метаболизма.
В процессе метаболизма выделяют два вида обмена:
1) пластический (конструктивный):
а) анаболизм (с затратами энергии);
б) катаболизм (с выделением энергии);
2) энергетический обмен (протекает в дыхательных мезосомах):
а) дыхание;
б) брожение.
В зависимости от акцептора протонов и электронов среди бактерий различают аэробы, факультативные анаэробы и облигатные анаэробы. Для аэробов акцептором является кислород. Факультативные анаэробы в кислородных условиях используют процесс дыхания, в бескислородных – брожение. Для облигатных анаэробов характерно только брожение, в кислородных условиях наступает гибель микроорганизма из-за образования перекисей, идет отравление клетки.
Дыхание микроорганизмов.
Путем дыхания микроорганизмы добывают энергию. Дыхание- биологический процесс переноса электронов через дыхательную цепь от доноров к акцепторам с образованием АТФ. В зависимости от того, что является конечным акцептором электронов, выделяют аэробное и анаэробное дыхание. При аэробном дыхании конечным акцептором электронов является молекулярный кислород (О2), при анаэробном- связанный кислород ( -NO3 , =SO4, =SO3).
По типу дыхания выделяют четыре группы микроорганизмов.
1.Облигатные (строгие) аэробы. Им необходим молекулярный (атмосферный) кислород для дыхания.
2.Микроаэрофилы нуждаются в уменьшенной концентрации (низком парциальном давлении) свободного кислорода. Для создания этих условий в газовую смесь для культивирования обычно добавляют CO2, например до 10- процентной концентрации.
3.Факультативные анаэробы могут потреблять глюкозу и размножаться в аэробных и анаэробных условиях. Среди них имеются микроорганизмы, толерантные к относительно высоким (близких к атмосферным) концентрациям молекулярного кислорода - т.е. аэротолерантные, а также микроорганизмы которые способны в определенных условиях переключаться с анаэробного на аэробное дыхание.
4.Строгие анаэробы размножаются только в анаэробных условиях т.е. при очень низких концентрациях молекулярного кислорода, который в больших концентрациях для них губителен. Биохимически анаэробное дыхание протекает по типу бродильных процессов, молекулярный кислород при этом не используется.
Аэробное дыхание энергетически более эффективно (синтезируется большее количество АТФ).
В процессе аэробного дыхания образуются токсические продукты окисления (H2O2- перекись водорода, -О2 - свободные кислородные радикалы), от которых защищают специфические ферменты, прежде всего каталаза, пероксидаза, пероксиддисмутаза. У анаэробов эти ферменты отсутствуют, также как и система регуляции окислительно- восстановительного потенциала (rH2).
Химическая реакция питательных веществ заключена в различных ковалентных связях между атомами в молекуле органических соединений, поэтому она не может быть непосредственно использована клеткой для осуществления всех жизненно важных процессов. Для этого потенциальной энергии органических молекул необходимо придать более активную, мобильную форму. Это достигается путем расщепления богатых энергией соединений — углеводов, липидов, белков и других — с последующим запасением выделившейся при этом энергии в молекулах специфических химических веществ, выполняющих роль аккумуляторов энергии (например, АТФ). Распад органических веществ происходит в процессе их окисления и осуществляется в митохондриях. Распад без доступа кислорода называется брожением, при участии кислорода (аэробный процесс) — дыханием. В результате процессов брожения органический материал распадается на более простые, богатые энергией органические продукты (молочная кислота, этиловый спирт и др.). При дыхании происходит полное расщепление органических веществ на бедные энергией конечные продукты (СО2 и Н2O) с высвобождением значительного количества энергии. Выделившаяся в обоих процессах энергия запасается в форме макроэргитических связей АТФ и может быть легко мобилизована клеткой. Запасенная в молекулах АТФ энергия переносится вместе с отщепляющейся фосфорной кислотой на другие соединения. Часть энергии, освобождаемой из питательных веществ, рассеивается в форме теплоты, а часть аккумулируется, т. е. накапливается в богатых энергией фосфатных связях АТФ. Именно АТФ обеспечивает энергией все виды клеточных функций. Молекула АТФ состоит из азотистого основания аденина, сахара рибозы и трех остатков фосфорной кислоты. Аденин, рибоза и первый фосфат образуют аденозинмонофосфат (АМФ). Если к первому фосфату присоединяется второй, получается аденозиндифосфат (АДФ). Молекула с тремя остатками фосфорной кислоты (АТФ) наиболее энергоемка. Синтез АТФ осуществляется в митохондриях, отсюда молекулы АТФ поступают в разные участки клетки, обеспечивая энергией процессы жизнедеятельности.
Основные методы создания анаэробных условий для культивирования микроорганизмов.
1.Физический- откачивание воздуха, введение специальной газовой безкислородной смеси (чаще- N2- 85%, CO2- 10%, H2- 5%).
2.Химический- применяют химические поглотители кислорода.
3.Биологический- совместное культивирование строгих аэробов и анаэробов (аэробы поглощают кислород и создают условия для размножения анаэробов).
4.Смешанный- используют несколько разных подходов.
Существует ряд приемов, обеспечивающих более подходящие условия для анаэробов- предварительное кипячение питательных сред, посев в глубокий столбик агара, заливка сред вазелиновым маслом для сокращения доступа кислорода, использование герметически закрывающихся флаконов и пробирок, шприцев и лабораторной посуды с инертным газом, использование плотно закрывающихся эксикаторов с горящей свечой. Используются специальные приборы для создания анаэробных условий- анаэростаты.