Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛинАл.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
840.7 Кб
Скачать

2.6. Собственные векторы и собственные значения

Пусть A — это квадратная матрица. Вектор v называется собственным вектором матрицы A, если 

Av = λv

где число λ называется собственным значением матрицы A. Таким образом преобразование, которое выполняет матрица A над вектором v, сводится к простому растяжению или сжатию с коэффициентом λ. Собственный вектор определяется с точностью до умножения на константу α ≠ 0, т.е. если v — собственный вектор, то и αv — тоже собственный вектор. 

2.7. Собственные значения

У матрицы A , размерностью (N×N) не может быть больше чем N собственных значений. Они удовлетворяют характеристическому уравнению  

det(A − λI) = 0, 

являющемуся алгебраическим уравнением N-го порядка. В частности, для матрицы 2×2 характеристическое уравнение имеет вид

Например,

Рис. 21 Собственные значения

Набор собственных значений λ1,..., λN матрицы A называется спектром A

Спектр обладает разнообразными свойствами. В частности

 det(A) = λ1×...×λN,                Sp(A) = λ1+...+λN.

Собственные значения произвольной матрицы могут быть комплексными числами, однако если матрица симметричная (At = A), то ее собственные значения вещественны. 

2.8. Собственные векторы

У матрицы A, размерностью (N×N) не может быть больше чем N собственных векторов, каждый из которых соответствует своему собственному значению. Для определения собственного вектора vn нужно решить систему однородных уравнений 

(A − λnI) vn = 0

Она имеет нетривиальное решение, поскольку det(A − λnI) = 0. 

Например,

Рис. 22 Собственные вектора

Собственные вектора симметричной матрицы ортогональны.

Приведение квадратичных форм к каноническому виду

            Рассмотрим некоторое линейное преобразование А с матрицей .

Это симметрическое преобразование можно записать в виде:

y1 = a11x1 + a12x2

y2 = a12x1 + a22x2

где у1 и у2 – координаты вектора  в базисе .

            Очевидно, что квадратичная форма может быть записана в виде

Ф(х1, х2) = х1у1 + х2у2.

 

            Как видно, геометрический смысл числового значения квадратичной формы Ф в точке с координатами х1 и х2 – скалярное произведение .

            Если взять другой ортонормированный базис на плоскости, то в нем квадратичная форма Ф будет выглядеть иначе, хотя ее числовое значение в каждой геометрической точке и не изменится. Если найти такой базис, в котором квадратичная форма не будет содержать координат в первой степени, а только координаты в квадрате, то квадратичную форму можно будет привести к каноническому виду.

            Если в качестве базиса взять совокупность собственных векторов линейного преобразования, то в этом базисе матрица линейного преобразования имеет вид:

.

            При переходе к новому базису от переменных х1 и х2 мы переходим к переменным  и . Тогда:

 

            Тогда .

Выражение  называется каноническим видом квадратичной формы. Аналогично можно привести к каноническому виду квадратичную форму с большим числом переменных.

Теория квадратичных форм используется для приведения к каноническому виду уравнений кривых и поверхностей второго порядка.

Теория пределов Предел последовательности

Число называется пределом последовательности , если , , : . Предел последовательности обозначается . Куда именно стремится , можно не указывать, поскольку , оно может стремиться только к .

Свойства:

  • Если предел последовательности существует, то он единственный.

  • (если оба предела существуют)

  • (если оба предела существуют)

  • (если оба предела существуют и знаменатель правой части не ноль)

  • Если и , то (теорема «о зажатой последовательности», также известная, как «теорема о двух милиционерах»)