
- •Оптические методы анализа Лекция 1
- •1.В зависимости от типа взаимодействий света с веществом различают:
- •2.Атомно-абсорбционный анализ
- •3.Способы атомизации образцов в ааа
- •3.1. Атомизация в пламенах
- •4. Электротермические атомизаторы.
- •7. Атомизация
- •8. Метод холодного пара.
- •9. Гидридный метод
- •Оптические методы анализа Лекция 2
- •3.2. Подгруппа меди.
- •3.3. Be, Мg и щелочноземельные Me.
- •3.4. Подгруппа цинка.
- •3.5. Элементы III группы.
- •3.6. Элементы IV, V и VI групп.
- •3.7. Платиновые металлы.
- •Оптические методы анализа Лекция 3
- •4. Качественный анализ по электронным спектрам поглощения
- •Оптические методы анализа. Лекция 4.
- •1. Метод Комаря (Комарь н.П.)
- •2. Метод Юнгпена-Тонга и Кинга.
- •3. Метод Цилена и Конника
- •Оптические методы анализа Лекция 5
- •3. Аналитические характеристики фотометрического анлиза.
- •1.Правильность спектрофотометрических данных.
- •2 .Нижняя граница определяемых содержаний при фотометрических определениях.
- •4.Воспроизводимость фотометрических методов анализа.
- •Оптические методы анализа Лекция 6
- •2. Экстракционно-фотометрическй метод.
- •3. Спектр0ф0т0метрическ0е титрование
- •4. Фотометрические реакции
- •Оптические методы анализа Лекция 7
- •1. Атомно-эмиссионныи спектральный анализ.
- •3. Источники возбуждения спектров
- •4. Методы количественного анализа.
- •Оптические методы анализа Лекция 8
- •1. Люминесцентный анализ
- •4. Качественный анализ.
- •5. Количественный анализ.
- •Оптические методы анализа лекция 9
- •1. Рефрактометрический анализ
- •2. Поляриметрический анализ
- •3. Нефелометрия и турбидиметрия.
- •4 .Методы комбинационного рассеяния света
- •Оптические методы анализа лекция 10
- •1. Лазерная спектроскопия
- •3. Лидар на к р.
- •4. Лидар на дифференциальном поглощении рассеянного света.
- •Оптические методы анализа Лекция 11
- •1 .Холостой опыт
- •2. Способы обработки данных.
- •2.2. Наклонный линейный фон. Метод базисной линии.
- •2.5. Фон с выраженным максимумом и(или) минимумом. Метод двух длин волн.
- •2.6. Фон любой формы. Метод дифференцирования сигнала (метод измерения производной).
- •3. Методы, основанные на использовании эвм.
- •Оптические методы анализа лекция 12
- •1. Методы подготовки проб
- •1.1. Металлы
- •1.2. Минералы и родственные геохимические пробы.
- •1.3. Органические вещества
- •2. Сухое озоление
- •3. Мокрое озоление
- •5. Потери определяемых элементов и загрязнение раствора пробы.
- •5.1. Стабильность разбавленных растворов
- •6. Очистка посуды
- •Оптические методы анализа Лекция 13
- •1. Спектроскопические методы определения следов элементов
- •2. Ошибки при измерении сигналов
- •2.1. Систематические ошибки
- •2.2. Случайные ошибки
- •4. Полоса пропускания электрической схемы
- •5. Измерение шума.
- •I) Оптимизация отношения сигнал/шум.
- •2) Влияние случайного шума на воспроизводимость анализа.
- •3) Влияние отношения сигнал/шум на предельную обнаруживаемую концентрацию определяемого элемента в пробе.
2. Экстракционно-фотометрическй метод.
Экстракционно-фотометрический метод основан на сочетании экстракции определяемого вещества с его последующим фотометрическим определением. Этот метод применяют при анализе сложных смесей,
1) когда нужно определить малые количества одних веществ в присутствии больших количеств других,
2) при определении примесей в присутствии основных компонентов, а также в тех случаях,
3) когда непосредственное определение интересующего элемента в смеси связано с большими трудностями.
При экстракции малых количеств примесей происходит не только их выделение, но и концентрирование. Поэтому экстракционно-фотометрический метод приобретает особо важное значение в связи с определением малых количеств примесей в веществах высокой степени чистоты, широко применяемых в атомной и полупроводниковой технике. Экстракционно-фотометрические методы анализа являются высокочувствительными методами, они быстро развиваются и очень перспективны. Экстракция разнолигандных комплексов - одно из наиболее интенсивно развивающихся направлений в аналитической химии, при этом разнолигандные комплексы используют для прямого определения не только ионов металлов-комплексообразователей, но и анионов-реагентов (лигандов). Разнообразие лигандов при образовании смешанных экстрагируюшихся комплексных соединений значительно расширяет возможности в повышении чувствительности экстракционно-фотометрических методов анализа. В экстракционно-фотометрических методах для определения металлов применяют экстракционные системы различных типов, выбор которых зависит от химической природы определяемого компонента, состава растворенных веществ и условий проведения экстракции. Для количественной оценки экстракционного равновесия используют следующие характеристики:
-Константа распределения KD = [MRn]O/[MRn] отношение концентрации экстрагируемой формы вещества (MRn)O в opганической фазе к его концентрации в той же самой форме в водной фазе в условиях равновесия. Для каждого несмешивающегося с водой растворителя константа распределения является величиной постоянной, при нормальном давлении зависит только от температуры и ионной силы раствора. Если обе жидкие фазы являются насыщенными относительно твердой фазы и равновесие достигнуто, то константа распределения равна отношению растворимостей распределяющегося вещества в органической и водной фазах: KD=SO/S
-Коэффициент распределения DC=CMO/CM отношение общей аналитической концентрации вещества в органической фазе к его обшей аналитической концентрации в водной фазе в условиях равновесия. Поскольку общая аналитическая концентрация является суммой различных ионных форм, соотношение между которыми в водной фазе зависит от рН и концентрации комплексобразующих peaгентов, коэффициент распределения не является постоянной величиной, а зависит от условий эксперимента и константы распределения.
-Массовый коэффициент распределения Dm=QO/Q отношение количества распределяемого вещества (ммоль) в органической фазе к количеству этого же вещества в водной фазе в условиях равновесия. Из сопоставления выражений DC и Dm нетрудно заметить, что
DC=DmW/V; Dm=DCV/W
где V и W- объемы водной и органической фаз.
Если, как это часто бывает при экстракции V/W=r=l, то величины DC и Dm становятся тождественными. При оценке полноты экстракции из выражения массового коэффициента распределения можно найти молярную долю (или процент) вещества, оставшегося в водной фазе после однократной экстракции:
= (Qисх-QO)/Qисх = Q/(QO+Q)=1/(Dm+1)
при d-кратной экстракции = (1+Dm)-d
Вычитая из единицы часть вещества, оставшуюся после экстракции, получим степень (фактор) извлечения:
E = QO/Qисх=DC/(DC+W/V)=Dm/(1+Dm)
- Степень извлечения представляет собой долю или процент от исходного количества вещества в объеме W водной фазы, экстрагируемую объемом V органический фазы при заданных условиях. Если водный раствор обрабатывают d последовательными порциями экстрагента и каждый раз отношение объемов органической и водной фаз V/W=r, то степень извлечения составляет Ed=1-(rD+1)-d
Степень извлечения зависит от тех же факторов, что и коэффициент распределения, и кроме того, от отношения объемов органической и водной фаз.
-Фактор обогащения
отношение количеств двух разделяемых веществ в фазе экстрагента отнесенное к исходному отношению их количеств до разделения. Фактор обогащения представляет собою коэффициент, на который нужно умножить исходное отношение количеств двух разделяемых веществ, чтобы получить отношение этих количеств в органической фазе после разделения.
при d = 1, r = 1:
-Фактор разделения
-
отношение коэффициентов распределения
двух разделяемых элементов MI
и MII.
-Константа экстракции Кex – константа равновесия реакции экстракции.
РН1/2 - значение рН раствора, при котором 50% исходного количества вещества экстрагируется в органическую фазу.
Коэффициент распределения является наиболее распространенной характеристикой экстракционных процессов, особенно в условиях конкурирующих равновесий в водной фазе. Эта характеристика, зависящая от условий проведения экстракции и взаимосвязанная с константами распределения и экстракции, позволяет получить объективную количественную информацию в реальных условиях анализа. Во многих случаях коэффициенты распределения определяют экспериментально, однако при определенных условиях их можно прогнозировать и теоретически. Для этого необходимо знать состав экстрагирующихся соединений, их константы распределения и экстракции, а также иметь сведения о конкурирующих реакциях и образующихся соединенях в водном растворе.