Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Optika_2008 (2).doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
1.06 Mб
Скачать

Изучение отражения и преломления света

Геометрическая оптика – это раздел оптики, изучающий распространение света в прозрачных средах, отражение и преломление лучей света на границе раздела сред. Луч света – это пучок света малого поперечного сечения. В геометрической оптике размеры границ сред считаются намного больше длины волны, так что дифракционными явлениями можно пренебречь.

Экспериментально установлены следующие законы геометрической оптики.

1 . В однородной изотропной среде свет распространяется прямолинейно.

2. Закон отражения света. При падении луча света на зеркальную поверхность он отражается. Луч падающий, отражённый и нормаль в точке падения лежат в одной плоскости. Угол падения равен углу отражения α = γ (рис. 1).

3. Закон преломления света. При падении луча света на границу раздела двух прозрачных сред луч света частично отражается, частично переходит во вторую среду и преломляется. Луч падающий, преломлённый и нормаль к поверхности в точке падения лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления для данной пары сред постоянно и равно относительному показателю преломления (рис.1)

. (1)

Если свет падает из вакуума на границу с прозрачной средой, то показатель преломления называется абсолютным. Относительный показатель преломления может быть определён как отношение абсолютных показателей преломления . Чем больше абсолютный показатель преломления, тем среда считается оптически более плотной.

Если луч света падает на границу с оптически менее плотной средой, например из стекла в воздух, то преломленный луч отклоняется от нормали на угол, больший угла падения. При падении под некоторым углом, названным предельным углом полного внутреннего отражения αпр, преломлённый луч отклонится на угол β = 90о и будет распространяться по поверхности раздела сред (рис. 2).

Если угол падения ещё увеличить, то преломленный луч исчезнет. Останется только отражённый луч, интенсивность которого по закону сохранения энергии равна интенсивности падающего луча. Это явление называется полным внутренним отражением. Предельный угол полного внутреннего отражения, согласно закону преломления при β = 90о, можно определить по формуле

, (2)

где n12 – относительный показатель преломления первой, оптически более плотной среды, по отношению ко второй.

Теоретическим обоснованием законов геометрической оптики является принцип Гюйгенса: точки среды, до которых дошла волна, становятся источниками вторичных волн. В однородной изотропной среде фронт вторичных волн – полусфера. Огибающая поверхность фронтов вторичных волн определяет новое положение фронта волны, а нормаль к фронту – направление распространения луча.

В качестве примера выведем закон преломления света. Пусть на границу двух сред падает параллельный пучок света. Как только фронт падающей волны в точке А коснётся границы, от этой точки начнёт распространяться вторичная волна (рис.3). В момент, когда фронт падающей волны дойдёт через время τ = BC/V1 до точки С, от точки А распространится вторичная волна на расстояние V2τ, где V2 – скорость распространения волны во второй среде. Для других источников на границе радиусы фронтов будут меньше. Огибающая фронтов вторичных волн СД будет фронтом преломленной волны. Для треугольников АВС и АСД можно составить отношение синусов угла падения α и угла преломления β:

. (3)

Е сли сопоставить уравнение (3) с законом преломления света (1), то не только подтвержден закон преломления, но и установлен физический смысл относительного показателя преломления. Показатель преломления равен отношению скоростей света в этих средах . Соответственно абсолютный показатель преломления равен отношению света в вакууме к скорости света в среде.

Экспериментальное исследование законов отражения и преломления света производится на установке (рис.4). Луч света от лазера падает по радиусу на цилиндрическую поверхность стеклянного полуцилиндра и, не преломляясь, попадает в центр нижней грани. В этой точке на границе с воздухом луч частично отражается, частично преломляется. Поворачивая визир, ловят преломленный луч, наблюдая его через щель визира. Углы о

О

тражения и преломления измеряются по шкале.

2. Интерференция – это явление сложения когерентных волн, при котором возникают области усиления и ослабления колебаний. При интерференции происходит перераспределение энергии из области ослабления в область усиления. При этом на экране будут наблюдаться темные и светлые полосы. Устойчивую интерференционную картину можно наблюдать только при сложении когерентных волн. Это волны, разность фаз которых в точке наблюдения остается постоянной и, кроме того, для поперечных световых волн направления колебаний световых векторов волн должны быть параллельны.

Свет от некогерентных источников, например от двух лампочек, не создает устойчивой картины интерференции. Даже если в какой-то точке два цуга волн, излученных разными атомами, усиливают друг друга, то примерно через 10-8 с они сменяются другими, которые могут ослаблять друг друга. В результате на экране интенсивность освещения быстро и хаотично меняется, а глаз в силу инерционности восприятия наблюдает равномерную освещенность.

Когерентные волны получают разделением пучка света на два пучка при отражении или преломлении. Затем эти волны, распространяясь каждая по своему пути, снова встречаются и интерферируют. Условием усиления колебаний когерентных волн является совпадение направлений колебаний световых векторов в точке наблюдения. Это будет, если разность фаз колебаний кратна 2p радиан: Dj = 2кp. Наибольшее ослабление колебаний будет, если направления колебаний световых векторов противоположны, разность фаз кратна нечетному числу p радиан: Dj = (2к+1)p. Здесь к – целое число, обычно небольшое для не идеально монохроматического света, к = 0,1,2,3 и т. д.

Пусть в некоторой точке пространства встречаются две когерентные волны, уравнения которых имеют вид

. (1)

Здесь w – циклическая частота, одинаковая для обеих волн. Аргумент косинуса называется фазой колебаний. Разность фаз колебаний двух волн, прошедших разные расстояния l1 и l2 в разных средах с различной длиной волны l1 и l2 , будет равна: . Для удобства решения задач интерференции полагают, что свет в разных средах распространяется с одинаковой скоростью, равной скорости света в вакууме: с =3 10 8 м/с. Но чтобы время распространения и фаза в точке наблюдения не изменились, увеличивают в раз его путь. Здесь V – скорость света в среде. Это воображаемое расстояние, равное произведению геометрического пути на показатель преломления, называется оптическим путем L = l n. Соответственно считают, что при той же частоте в n раз увеличилась длина волны λ = λ1n1 = λ2n2 и стала равна длине волны в вакууме.

Подставив условие усиления и ослабления волн при интерференции в уравнение разности фаз волн (1), получим, что волны усиливают друг друга, если разность оптических путей кратна четному числу длин полуволн, и ослабляют, если равна нечетному числу длин полуволн.

mах: l2n2l1 n1 = кl (2), min: l2 n2 - l1 n1 = (2к +1)l/2. (3)

Оптический путь зависит также от условий отражения света. Если свет отражается от оптически более плотной среды, с большим показателем преломления, то в отраженной волне фаза изменяется на p радиан. Это соответствует увеличению оптического пути этого луча на половину длины волны, l/2.

Рассмотрим частный случай явления интерференции – образование колец Ньютона. Для наблюдения интерференционных колец плосковыпуклую линзу большого радиуса кривизны поверхности, положенную выпуклой стороной на стеклянную пластинку, освещают параллельным пучком света. Когерентные лучи 1 и 2 образуются при отражении света от поверхностей воздушного клина между нижней поверхностью линзы и стеклянной пластинкой (рис. 1).

О птическая разность хода отраженных лучей 1 и 2 возникает потому, что луч 2, после разделения с лучом 1 в точке А, дважды проходит расстояние d между линзой и пластинкой и еще теряет полволны при отражении от пластинки. Путь луча 1 от точки разделения А до фронта АВ равен нулю. Разность оптических путей будет равна

. (4)

Если оптическая разность хода удовлетворяет условию минимума, то во всех точках с одинаковой толщиной воздушного зазора будет минимум освещенности, и эти точки образуют темное кольцо. В монохроматическом свете интерференционная картина будет иметь вид темных и светлых колец, в белом – радужных. В центре колец будет темное пятно, так как толщина зазора здесь стремится к нулю, а разность оптических путей DL® l/2, что соответствует условию минимума. Толщину воздушного зазора, например для темных колец, определим, приравняв оптическую разность хода отраженных лучей (4) к условию минимума , откуда .

Получим формулу для радиуса колец. По теореме Пифагора для треугольника ОАС (рис. 1) r 2 = R 2(R d)2 = 2Rd + d 2. Так как толщина зазора много меньше радиуса кривизны линзы, d<< R, то, пренебрегая малой величиной d 2, получим r2 @ 2Rd, или . Подставив сюда толщину зазора для темных колец, получим формулу радиуса темных колец в отраженном свете

. (5)

Это уравнение можно использовать для измерения длины волны по известному радиусу кривизны линзы или, наоборот, радиуса кривизны линзы по известной длине волны.

Экспериментальное наблюдение колец Ньютона производится с помощью микроскопа. Горизонтальный пучок света от лампочки осветителя падает на делительную пластинку, расположенную точно под углом 45о. Часть светового потока отражается вниз на систему линза – стеклянная пластинка и, отразившись от воздушного зазора, попадает через микроскоп в глаз наблюдателя. Делительная пластинка красного света одновременно является светофильтром, λ = 0,67 мкм. Радиусы наблюдаемых колец измеряются по шкале в малых делениях и приводятся к истинному значению умножением на коэффициент увеличения микроскопа 0,041 мм/дел .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]