- •Вопрос 7 Комплексные числа. Алгебраическая и тригонометрическая формы записи комплексных чисел. Формула Муавра, извлечение корней из комплексных чисел.
- •Вопрос 8
- •Вопрос 10
- •Вопрос 13.Деление отрезка в данном отношении.
- •Вопрос 14 Расстояние от точки до прямой
- •Вопрос 15
- •Вопрос 16 Условие перпендикулярности и параллельности двух прямых.Взаимное расположение двух прямых на плоскости
- •Условия параллельности и перпендикулярности прямых в пространстве
- •Вопросы 17-19
- •Вопрос 20
- •Вопрос 21
- •Вопрос 22
- •Цилиндрические поверхности
- •Конические поверхности
- •Поверхности вращения
- •Вопрос 23
- •Операции над множествами
- •Обратная функция
- •Сложная функция
- •Фактически эта запись означает следующую цепочку функциональных преобразований:
- •Основные свойства функций.
- •Формулировка
- •Вопрос 39.
- •Вопрос 40.
- •Вопрос 41.
- •Вопрос 42.
- •Вопрос 43.
- •Вопрос 44-45.
- •Второй замечательный предел
- •Вопрос 46-47.
- •Правило 4.
- •Правило 5.
- •Правило 6.
Вопрос 10
Смешанным
произведением трех векторов
,
,
называется
число, равное скалярному произведению
вектора
на
вектор
:
Вопрос 13.Деление отрезка в данном отношении.
Координаты точки М(х,у), лежащей на отрезке АВ и делящей его в данном отношении:
вычисляются по формулам:
Вопрос 14 Расстояние от точки до прямой
Каждый не равный нулю вектор, лежащий на данной прямой или параллельный ей, называется направляющим вектором этой прямой.
Вопрос 15
Вопрос 16 Условие перпендикулярности и параллельности двух прямых.Взаимное расположение двух прямых на плоскости
|
Если две прямые l1 и l2 лежат на плоскости, то возможны три различных случая их взаимного расположения: 1)пересекаются (т.е. имеют одну общую точку); 2) параллельны и не совпадают; 3) совпадают. Выясним, как узнать, какой из этих случаев имеет место, если эти прямые заданы своими уравнениями в общем виде:
Если прямые l1 и l2 пересекаются в некоторой точке М(х,у), то координаты этой точки должны удовлетворять обоим уравнениям системы (12). Следовательно, чтобы найти координаты точки пересечения прямых l1 и l2, надо решить систему уравнений (12): 1) если система (12) имеет единственное решение, то прямые l1 и l2 пересекаются; 2) если система (12) не имеет решения, то прямые l1 и l2 параллельны; 3) если система (12) имеет множество решений, то прямые l1 и l2 совпадают. Условием совпадения двух прямых является пропорциональность соответствующих коэффициентов их уравнений. |
Условия параллельности двух прямых:
а) Если прямые заданы уравнениями с угловым коэффициентом, то необходимое и достаточное условие их параллельности состоит в равенстве их угловых коэффициентов:
k1 = k2
б) Для случая, когда прямые заданы уравнениями в общем виде (A1x + B1y + C1 = 0,
A2x + B2y + C2 = 0,
), необходимое и достаточное условие их параллельности состоит в том, что коэффициенты при соответствующих текущих координатах в их уравнениях пропорциональны, т. е.
5. Условия перпендикулярности двух прямых:
а) В случае, когда прямые заданы уравнениями с угловым коэффициентом, необходимое и достаточное условие их перпендикулярности заключается в том, что их угловые коэффициенты обратны по величине и противоположны по знаку, т. е.
Условия параллельности и перпендикулярности прямых в пространстве
Чтобы две прямые были параллельны необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, т.е. их соответствующие координаты были пропорциональны.
Чтобы две прямые были перпендикулярны необходимо и достаточно, чтобы направляющие векторы этих прямых были перпендикулярны, т.е. косинус угла между ними равен нулю.
Вопросы 17-19
Фокальное свойство эллипса: Эллипс является множеством точек, сумма расстоя-
ний от которых до фокусов постоянна: F1M + F2M = 2a.
Фокальное свойство гиперболы: Гипербола является геометрическим местом точек,
разность расстояний от которых до фокусов по абсолютной величине постоянна:
|F1M − F2M| = 2a. Фокальное свойство параболы: Таким образом, парабола представляет собой множество всех точек плоскости, равноотстоящих от данной точки (фокуса) и от данной прямой (директрисы). Это характеристическое свойство параболы.
