
- •1.1.3. Рішення задачі засобами excel
- •2. Постановка «Власної» задачі
- •2.1. Змістовна постановка задачі
- •3. Планування операції
- •3.1. Змістовна постановка задачі
- •3.3.1. Аналіз моделі на чутливість
- •3.4. Рішення задачі симплекс-методом
- •3.5. Постоптимальний аналіз
- •3.5.1. Визначення цінностей ресурсів
- •3.6.2. Діапазони зміни рівня запасів ресурсів
- •3.6.3. Цінність ресурсів
- •3.6.4. Діапазони зміни витрат виробництва
3.5. Постоптимальний аналіз
3.5.1. Визначення цінностей ресурсів
Спосіб 1
Знаходиться
за фомулою:
.
Отже, y1 = 0, y2 = -4, y3 = 9, y4 = 7.
Спосіб 2
Двоїста задача:
max z = 700*y1 + 1100*y2 + 1000*y3 + 2000*y4
0.5*y1 + 1*y3 <= 10 (x11)
0.25*y1 + 1*y4 <= 7 (x12)
1*y2 + 1*y3 <= 5 (x21)
0.5*y2 + 1*y4 <= 5 (x22)
y1 <= 0 (s1)
y2 <= 0 (s2)
-y3 <= 0 (S3)
-y4 <= 0 (S4)
В оптимальній симплекс-таблиці прямої задачі базисними змінними являються: s1, x21, x12, x22. Тоді, згідно з співвідношення доповнюючої нежорсткості, відповідні обмеження – нерівності двоїстої задачі, які відповідають цим змінним, в точці оптимуму виконуються як рівності. Таким чином, отримуємо наступну систему лінійних рівнянь.
Спосіб 3
y1 = (dN)s1 = 0 (s1 – залишкова змінна)
y2 = (dN)s2 = -4 (s2 – залишкова змінна)
y3 = -(dN)S3 = -(-9) = 9 (S3 – надлишкова змінна)
y4 = -(dN)S4 = -(-7) = 7 (S4 – надлишкова змінна)
3.5.2. Діапазони стійкості
3.5.2.1. Зміна компонент вектора обмежень
Недефіцитні ресурси
Ресурс 1.
Дефіцитні ресурси
Ресурс 2.
Ресурс 3.
Ресурс 4.
3.5.2.2. Зміна коефіціентів цільової функції
Небазисні змінні
Базисні змінні
3.6. Результати рішення та постоптимального аналізу
3.6.1. Оптимальне рішення задачі
Оптимальне розподілення виготовлення виробів по швейних машинках для мінімізації витрат є наступним:
Виготовлення виробу BC1 на першій швейній машинці у кількості 0 шт.
Виготовлення виробу BC2 на першій швейній машинці у кількості 1800 шт.
Виготовлення виробу BC1 на другій швейній машинці у кількості 1000 шт.
Виготовлення виробу BC2 на другій швейній машинці у кількості 200 шт.
Витрати, при такому розподілені, складуть 18600 од. вартості.
3.6.2. Діапазони зміни рівня запасів ресурсів
Відносні зміни рівня запасів ресурсів, за яких оптимальне рішення не зміниться:
Час використання першої швейної машинки для виготовлення виробів ВС1 і ВС2 може бути зменшений на 250 год. або необмежено збільшений.
Час використання другої швейної машинки для виготовлення виробів ВС1 і ВС2 може може бути зменшений на 100 год. або збільшений на 900 год.
Планова кількість виготовлення виробу ВС1 може бути зменшена на 900 шт. або збільшена на 100 шт.
Планова кількість виготовлення виробу ВС2 може бути зменшена на 1800 шт. або збільшена на 1000 шт.
Абсолютні зміни рівня запасів ресурсів, за яких оптимальне рішення не зміниться:
Час використання першої швейної машинки для виготовлення виробів ВС1 і ВС2 може змінюватися від 450 год. до нескінченості.
Час використання другої швейної машинки для виготовлення виробів ВС1 і ВС2 може змінюватися від 1000 до 2000 год.
Планова кількість виготовлення виробу ВС1 може змінюватися від 100 до 1100 шт.
Планова кількість виготовлення виробу ВС2 може змінюватися від 200 до 3000 шт.
3.6.3. Цінність ресурсів
Цінність ресурсів наведена у таблиці:
Ресурс |
Назва |
Статус |
Цінність |
1 |
Час використання першої швейної машинки для виготовлення виробів ВС1 і ВС2 |
Недефіцитний |
0 |
2 |
Час використання другої швейної машинки для виготовлення виробів ВС1 і ВС2 |
Дефіцитний |
-4 |
3 |
Планова кількість виготовлення виробу ВС1 |
Дефіцитний |
9 |
4 |
Планова кількість виготовлення виробу ВС2 |
Дефіцитний |
7 |
Час використання першої швейної машинки для виготовлення виробів ВС1 і ВС2 не впливає на загальні витрати.
Кожна година використання другої швейної машинки для виготовлення виробів ВС1 і ВС2 призводить до зменшення загальних витрат на 4 од. вартості.
Виготовлення кожної одиниці виробу ВС1 призводить до збільшення загальних витрат на 9 од. вартості.
Виготовлення кожної одиниці виробу ВС2 призводить до збільшення загальних витрат на 7 од. вартості.