- •1.Определение положения точки в пространстве. Вектор перемещения.
- •1.2.Вектор перемещения.
- •Вектор скорости. Вектор ускорения. Тангенциальное и нормальное ускорение
- •В ектор Ускорения
- •Кинематика твердого тела. Число степеней свободы. Поступательное движение твердого тела.
- •4 Вращательное движение твердого тела.
- •5 Движение отдельных точек вращающегося твердого тела.
- •6 Плоское движение твердого тела
- •7 Сила. Сложение сил и разложение силы на составляющие. Проекции силы на плоскость и ось.
- •Статическое и динамическое проявление сил. Законы Ньютона. Принцип независимости действия сил.
- •9.Момент силы относительно произвольного центра. Момент силы относительно произвольной оси. Момент силы относительно произвольного центра.
- •Момент силы относительно произвольной оси.
- •Основной закон динамики. Основной закон динамики. Уравнение моментов для тела движущего по окружности.
- •Движение тел в поле центральных сил
- •Основной закон динамики системы материальных точек.
- •Уравнения моментов для системы материальных точек относительно произвольного центра, произвольной оси.
- •Основной закон динамики тела переменной массы (уравнение Мещерского)
- •15. Первое и второе соотношение Циолковского.
- •Второе соотношение Циолковского.
- •Относительность механического движения. Галилеевы преобразования координат и закон сложения скоростей.
- •7.1.Относительность механического движения.
- •Постулаты Эйнштейна. "Радиолокационный" метод (метод коэффициента "k ").
- •Замедление" хода времени. Относительная скорость.
- •Сравнение поперечных размеров тел. Эффект "сокращения" длин.
- •Преобразования Лоренца. Интервал. Инвариантность интервала.
- •Релятивистская масса, релятивистский импульс. Релятивистское уравнение движения.
- •Неинерциальные системы отсчёта. Силы инерции. Силы инерции во вращающихся системах отсчета. Силы инерции Кориолиса.
- •Силы трения. Сухое трение. Силы трения качения.
- •Вязкое трение. Движение тел в сопротивляющейся среде. Вязкое трение
- •Упругие силы. Продольное сжатие и растяжение. Закон Гука.
- •Продольное сжатие и растяжение.Закон Гука.
- •Деформация сдвига и кручения.
- •Деформация кручения.
- •Закон всемирного тяготения.
- •Потенциальная энергия гравитационного взаимодействия, гравитационный потенциал. Связь напряжённости и потенциала поля.
- •Работа и энергия. Работа силы тяжести. Работа упругих сил.
- •Работа упругих сил.
- •Работа и кинетическая энергии. Потенциальная энергия. Закон сохранения энергии
- •Потенциальная энергия.
- •Нормировка потенциальной энергии, закон сохранения энергии.
- •Момент инерции твёрдого тела.
- •Момент инерции однородного шара относительно его центра.
- •Теорема Штейнера.
- •Кинетическая энергия твёрдого тела для различных типов движения. Поступательное движение
- •Вращательное движение
- •Плоское движение тела
- •Гироскопы. Прецессия волчка. Гироскопы.
- •Прецессия волчка.
- •Давление покоящейся жидкости.
- •Уравнение гидростатики Эйлера.
- •Уравнение поверхности уровня.
- •37 .Закон паскаля.
- •38. Сообщающиеся сосуды, заполненные однородной жидкостью
- •39.Закон Архимеда.
- •40. Механика движущихся жидкостей. Расход жидкости. Уравнение неразрывности струи жидкости.
- •41.Уравнение Бернулли. Формула Торричелли.
- •42.Ламинарное и турбулентное течение жидкости. Число Рейнольдса.
- •43.Колебательное движение. Характеристики колебаний.
- •44.Собственные колебания.
- •45.Затухающие колебания.
- •46.Вынужденные колебания.
Относительность механического движения. Галилеевы преобразования координат и закон сложения скоростей.
7.1.Относительность механического движения.
Покой и движение тел относительны и определяются выбором тела отсчета (системы отсчета). Например, сидящий в вагоне движущегося поезда пассажир покоится относительно вагона и движется относительно полотна дороги.
Абсолютным называется движение тела относительно системы, условно принятой за неподвижную.
Система, совершающая движение относительно неподвижной системы, называется движущейся или подвижной.
Относительным называется движение тела относительно подвижной системы. Переносным называется движение подвижной системы относительно неподвижной. Пусть положение т. А определено в двух системах отсчета: неподвижной OXYZ и подвижной O'X'Y'Z'
н
еподвижной
системе положение т. А
определяются радиус-вектором в
подвижной –
,
а положение начала подвижной системны
относительно неподвижной определяются
вектором .
К
ак
видно из рисунка, связь между
радиус-векторами, определяющими положение
точки в обеих системах отсчета выражается
соотношением:
Легко видеть, что аналогично связаны и векторы скорости в этих системах (абсолютная и относительная):
Но для вектора ускорения при произвольном движении тела и подвижной системы эта связь оказывается более сложной.
Если подвижная система наряду с поступательным совершает и вращательное движение, а тело движется относительно нее, в относительном и переносном ускорениях появляется дополнительный член, одинаковый и для относительного, и для переносного ускорения, обусловленный движением тела во вращающейся системе отсчета. Это происходит даже при равномерном движении тела относительно подвижной системы. Следовательно, с точки зрения наблюдателя подвижного, нарушается основной закон динамики (т.е. подвижная система не попадает в круг систем, определенный первым законом Ньютона).
Системы, в которых выполняется законы Ньютона, называют инерциальными. Инерциальные - это такие системы отсчета, в которых ускорение вызывается только действием сил, а сами силы появляется только в результате взаимодействий тел.
Предположим, что две системы отсчета находятся в относительном движении (рис.29).
Е
сли
тело С покоится относительно системы
А,
то оно движется равномерно и прямолинейно
относительно подвижной системы, пока
к телу отсчета В
не приложены силы. Если же к телу отсчета
В
приложить силу
, система
начнет двигаться ускоренно относительно
системы А
и, соответственно. тело С относительно
нее получит ускорение, хотя на него и
не действуют силы. Основной закон
динамики нарушается. Поэтому инерциальные
системы отсчета связаны только со
свободными телами отсчета.
Галилеевы преобразования координат и закон сложения скоростей.
Предположим, что одна из систем отсчета неподвижна, а другая - движется относительно первой с постоянной скоростью, так что оси ОХ,O’Х' и OY ,0'Y' остается параллельными, а ось 0'Y' скользит вдоль OY со скоростью (рис.30).
П
оложение
т. А
можно задать векторным и координатным
способами в обеих системах отсчета.
Будем считать, что в исходный момент
времени системы полностью совпадают.
Тогда к моменту времени t,
измеренному в неподвижной системе,
подвижная система совершит перемещение
. Координаты т. А
в двух системах отсчета связаны
соотношениями:
х'=х (133)
z'=z (135)
Опыт показывает, что течение времени в обеих системах одинаково:
t'=t (136)
Совокупность соотношений (133, 134, 135, 136) и представляет собой преобразования Галилея в координатной форме.Более компактную форму принимают преобразования Галилея, если положение т. А
определять векторным способом: t' = t (138)
Справедливы и преобразования Галилея для обратного перехода:
х = х' (139)
z=z' (141)
t=t’ (142)
или
Скорость т. А в двух системах отсчета связана соотношением:
