
- •1.Определение положения точки в пространстве. Вектор перемещения.
- •1.2.Вектор перемещения.
- •Вектор скорости. Вектор ускорения. Тангенциальное и нормальное ускорение
- •В ектор Ускорения
- •Кинематика твердого тела. Число степеней свободы. Поступательное движение твердого тела.
- •4 Вращательное движение твердого тела.
- •5 Движение отдельных точек вращающегося твердого тела.
- •6 Плоское движение твердого тела
- •7 Сила. Сложение сил и разложение силы на составляющие. Проекции силы на плоскость и ось.
- •Статическое и динамическое проявление сил. Законы Ньютона. Принцип независимости действия сил.
- •9.Момент силы относительно произвольного центра. Момент силы относительно произвольной оси. Момент силы относительно произвольного центра.
- •Момент силы относительно произвольной оси.
- •Основной закон динамики. Основной закон динамики. Уравнение моментов для тела движущего по окружности.
- •Движение тел в поле центральных сил
- •Основной закон динамики системы материальных точек.
- •Уравнения моментов для системы материальных точек относительно произвольного центра, произвольной оси.
- •Основной закон динамики тела переменной массы (уравнение Мещерского)
- •15. Первое и второе соотношение Циолковского.
- •Второе соотношение Циолковского.
- •Относительность механического движения. Галилеевы преобразования координат и закон сложения скоростей.
- •7.1.Относительность механического движения.
- •Постулаты Эйнштейна. "Радиолокационный" метод (метод коэффициента "k ").
- •Замедление" хода времени. Относительная скорость.
- •Сравнение поперечных размеров тел. Эффект "сокращения" длин.
- •Преобразования Лоренца. Интервал. Инвариантность интервала.
- •Релятивистская масса, релятивистский импульс. Релятивистское уравнение движения.
- •Неинерциальные системы отсчёта. Силы инерции. Силы инерции во вращающихся системах отсчета. Силы инерции Кориолиса.
- •Силы трения. Сухое трение. Силы трения качения.
- •Вязкое трение. Движение тел в сопротивляющейся среде. Вязкое трение
- •Упругие силы. Продольное сжатие и растяжение. Закон Гука.
- •Продольное сжатие и растяжение.Закон Гука.
- •Деформация сдвига и кручения.
- •Деформация кручения.
- •Закон всемирного тяготения.
- •Потенциальная энергия гравитационного взаимодействия, гравитационный потенциал. Связь напряжённости и потенциала поля.
- •Работа и энергия. Работа силы тяжести. Работа упругих сил.
- •Работа упругих сил.
- •Работа и кинетическая энергии. Потенциальная энергия. Закон сохранения энергии
- •Потенциальная энергия.
- •Нормировка потенциальной энергии, закон сохранения энергии.
- •Момент инерции твёрдого тела.
- •Момент инерции однородного шара относительно его центра.
- •Теорема Штейнера.
- •Кинетическая энергия твёрдого тела для различных типов движения. Поступательное движение
- •Вращательное движение
- •Плоское движение тела
- •Гироскопы. Прецессия волчка. Гироскопы.
- •Прецессия волчка.
- •Давление покоящейся жидкости.
- •Уравнение гидростатики Эйлера.
- •Уравнение поверхности уровня.
- •37 .Закон паскаля.
- •38. Сообщающиеся сосуды, заполненные однородной жидкостью
- •39.Закон Архимеда.
- •40. Механика движущихся жидкостей. Расход жидкости. Уравнение неразрывности струи жидкости.
- •41.Уравнение Бернулли. Формула Торричелли.
- •42.Ламинарное и турбулентное течение жидкости. Число Рейнольдса.
- •43.Колебательное движение. Характеристики колебаний.
- •44.Собственные колебания.
- •45.Затухающие колебания.
- •46.Вынужденные колебания.
9.Момент силы относительно произвольного центра. Момент силы относительно произвольной оси. Момент силы относительно произвольного центра.
Моментом силы называют количественную меру вращательного эффекта, вызываемого силой. Момент силы должен определять величину этого эффекта, плоскость поворота точки и направление поворота в этой плоскости.
(рис 23)
В
еличина
момента силы равна произведению модуля
силы на ее плечо h (величину перпендикуляра,
опущенного из заданного центра O
на линию действия силы). Если начало
вектора силы совпадает с точкой А, а
конец – А с точкой В, то, очевидно,
плоскость поворота совпадает с плоскостью
треугольника OAB (рис. 23).
У
словились
вектор момента силы относительно центра
M0(F)
проводить из этого центра O перпендикулярно
плоскости поворота в ту сторону, откуда
поворот виден происходящим против хода
часовых стрелок. Модуль же вектора
(длина вектора в выбранном масштабе)
равен .
Очевидно, что такой вектор равен векторному произведению:
г
де:
r - радиус-вектор точки приложения силы,
проведенный из заданного центра.
Момент силы относительно произвольной оси.
Моментом силы относительно оси называют величину, характеризующую вращательный эффект, вызываемый силой при вращении тела вокруг заданной оси.
К телу А, способному вращаться вокруг оси z приложена сила F (рис. 24). Очевидно, что эффект вызываемый силой, определяется суммой эффектов, вызываемых ее проекциями Fz и Fxy, первая из которых вращения тела вокруг оси z вызвать не может. Следовательно, момент силы относительно заданной оси определяется моментом ее проекции на плоскость, перпендикулярную оси, относительно точки Пересечения оси с плоскостью.
Основной закон динамики. Основной закон динамики. Уравнение моментов для тела движущего по окружности.
П
усть
точка движется по окружности радиуса
с центром в т. О под действием силы F,
составляющей угол a
с касательной а окружности (рис. 26).
(рис 26)
Второй закон динамики в проекциях на касательное направление имеет вид:
Учитывая, что и умножив обе части (61) на R получим:
из рисунка видно, что Rcosa=h (плечо силы относительно центра окружности). Учитывая также направление векторов углового ускорения и момента силы относительно центра окружности, получим:
С
равним
полученное выражение с основным законом
динамики Ньютона в частной формулировке
З
аметим,
что в (63) и (64) физический смысл
аналогичен, только речь
идет о разных типах движения. Поэтому
одинаков и физический смысл величин m
и mR2.
Следовательно, величина mR2
определяет
инертные свойства тела при вращательном
движении. Эта величина I=mR2
называется моментом инерции тела
(точки). С учетом сказанного основной
закон динамики для вращательного
движения записывают в виде: