Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Готовые шпоры по Механике!.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
3.89 Mб
Скачать

В ектор Ускорения

Вектором ускорения называют вектор, определяющий быстроту и направление изменения вектора

скорости. Аналогично определени­ям для вектора скорости вводятся понятия среднего и мгновенного

у скорения:

При движении точки по произвольной траектории вектор изме­нения скорости Δ и, следовательно, вектор ускорения направлены в сторону вогнутости траектории независимо от того, увели­чивается или уменьшается величина скорости.

Ускоренное движение Замедленное движение

Как видно из рисунков, в обоих случаях вектор d направлен в сторону вогнутости траектории. При ускоренном движении он отклоняется в сторону движения, при замедленном - в противоположную

Для определения мгновенного ускорения надо рассматривать бесконечно малые перемещения, т.е. векторы скорости 1 и 2 в соседних точках траектории. Поэтому вектор ускорения лежит в плоскости, содержащей касательную к траектории в данной точке и прямую, параллельную касательной в соседней точке траектории. Такая плоскость называется соприкасающейся. Поэтому наряду с представлением вектора ускорения компонентами

  1. Кинематика твердого тела. Число степеней свободы. Поступательное движение твердого тела.

Для нахождения кинематического закона движения, т.е. r=r(t) или х = х(t), у=y(t), z=z(t) надо найти закон движения каждой точки тела, т.е. решить бесконечно большое число уравнений, что сопряжено с непреодолимыми математическими трудностями.

Однако особенности самого твердого тела и особенности его движения могут значительно упростить задачу.

Числом степеней свободы называют число независимых механичес­ких координат полностью и однозначно определяющих положение тела в пространстве. Или: число независимых механических движений, которые одновременно может совершать тело.

Из таких определений следует, что число степеней свободы для свободной материальной точки равно 3. Для совокупности из n невзаимодействующих между собой точек число степеней свободы равно 3n.

Любые связи (взаимодействия) ограничивают число степеней сво­боды. Например, точка двигается по поверхности, задаваемой уравнением F(x,y,z)=0. В этом случае необходимо задать независимо 2 координаты, третья же не является независимой - она определяет­ся из уравнения поверхности, по

которой движется точка. Иначе говоря, для точки, движущейся по поверхности, число степеней сво­боды равно 2. Для точки, движущейся вдоль линии, число степеней свободы равно 1. Действительно, любую линию можно пересечением двух поверхностей, т.е. для определения положения точки в пространстве нужно указать независимо только одну координату, две другие же определяются из уравнения линии.

Рассмотрим теперь систему точек, связанных жесткими связями. Пусть таких точек 2. Для определения положения одной из точек системы в пространстве нужно указать 3 координаты, т.е. эта часть системы обладает 3-мя степенями свободы. Если эту точ­ку закрепить неподвижно, у системы будет отнято 3 степени свободы. Вторая точка при этом может двигаться только по поверхности сферы, т.е. обладает 2-мя степенями свободы. Следовательно, вся система обладает 5-ю степенями свободы.

Аналогично определяется число степеней свободы для системы, состоящей из трех жестко связанных между собой точек (рис. 8). Если одну из точек системы закрепить, у системы отнимается 3 степени свободы При закреплении второй точки дополнительно отнимается еще а степени свободы При этом третья точка сможет двигать­ся только вдоль линии, т.е. обладает одной степенью свободы. поэтому вся система обладает 6-ю степенями свободы. Легко убедиться» что добавляя к такой системе 4-ю, 5-ю и т.д. точки, мы не увеличим число степеней свободы, т.е. максимальное число степеней свободы для системы жестко связанных между собой точек равно. Абсолютно твердое тело как раз представляет собой такую систему, следовательно, обладает 6-ю степенями свободы.

ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЁРДОГО ТЕЛА.

Поступательным называют такое движение твердого тела, при котором любая прямая, проведенная в теле, при движении тела остается параллельной самой себе. Будем рассматривать движение абсолютно твердого тела. Выделим в теле произвольно т. т. А1 и В1. Через промежуток времени t они займут положения А2 и В2 соответственно

Эти положения можно задать векторным способом, указав радиус-векторы ra1, rb1, ra2, rb2. Перемещения точек равны ra, и rb . Векторы (A1B1)и (A2B2) равны между собой, так как равны их модули (тело абсолютно твердое) и одинаковы направления (тело перемещается поступательно).

Поэтому перемещения точек А и В равны (ra = rb) Поскольку точ­ки выбирались произвольно, можно сделать вывод, что при поступательном движении тела все его точки совершают одинаковые перемещения. По определению:

т.е. и скорости всех точек тела одинаковы. Аналогично можно пока­зать, что и ускорения всех точек тела одинаковы. Следовательно, при поступательном движении все точки тела движутся одинаково и для описания движения тела достаточно рассмотреть движение только одной его точки (чаще всего центра масс тела). Пример поступа­тельного движения - движение кузова автомобиля на прямолинейном участке дороги.