- •1.Определение положения точки в пространстве. Вектор перемещения.
- •1.2.Вектор перемещения.
- •Вектор скорости. Вектор ускорения. Тангенциальное и нормальное ускорение
- •В ектор Ускорения
- •Кинематика твердого тела. Число степеней свободы. Поступательное движение твердого тела.
- •4 Вращательное движение твердого тела.
- •5 Движение отдельных точек вращающегося твердого тела.
- •6 Плоское движение твердого тела
- •7 Сила. Сложение сил и разложение силы на составляющие. Проекции силы на плоскость и ось.
- •Статическое и динамическое проявление сил. Законы Ньютона. Принцип независимости действия сил.
- •9.Момент силы относительно произвольного центра. Момент силы относительно произвольной оси. Момент силы относительно произвольного центра.
- •Момент силы относительно произвольной оси.
- •Основной закон динамики. Основной закон динамики. Уравнение моментов для тела движущего по окружности.
- •Движение тел в поле центральных сил
- •Основной закон динамики системы материальных точек.
- •Уравнения моментов для системы материальных точек относительно произвольного центра, произвольной оси.
- •Основной закон динамики тела переменной массы (уравнение Мещерского)
- •15. Первое и второе соотношение Циолковского.
- •Второе соотношение Циолковского.
- •Относительность механического движения. Галилеевы преобразования координат и закон сложения скоростей.
- •7.1.Относительность механического движения.
- •Постулаты Эйнштейна. "Радиолокационный" метод (метод коэффициента "k ").
- •Замедление" хода времени. Относительная скорость.
- •Сравнение поперечных размеров тел. Эффект "сокращения" длин.
- •Преобразования Лоренца. Интервал. Инвариантность интервала.
- •Релятивистская масса, релятивистский импульс. Релятивистское уравнение движения.
- •Неинерциальные системы отсчёта. Силы инерции. Силы инерции во вращающихся системах отсчета. Силы инерции Кориолиса.
- •Силы трения. Сухое трение. Силы трения качения.
- •Вязкое трение. Движение тел в сопротивляющейся среде. Вязкое трение
- •Упругие силы. Продольное сжатие и растяжение. Закон Гука.
- •Продольное сжатие и растяжение.Закон Гука.
- •Деформация сдвига и кручения.
- •Деформация кручения.
- •Закон всемирного тяготения.
- •Потенциальная энергия гравитационного взаимодействия, гравитационный потенциал. Связь напряжённости и потенциала поля.
- •Работа и энергия. Работа силы тяжести. Работа упругих сил.
- •Работа упругих сил.
- •Работа и кинетическая энергии. Потенциальная энергия. Закон сохранения энергии
- •Потенциальная энергия.
- •Нормировка потенциальной энергии, закон сохранения энергии.
- •Момент инерции твёрдого тела.
- •Момент инерции однородного шара относительно его центра.
- •Теорема Штейнера.
- •Кинетическая энергия твёрдого тела для различных типов движения. Поступательное движение
- •Вращательное движение
- •Плоское движение тела
- •Гироскопы. Прецессия волчка. Гироскопы.
- •Прецессия волчка.
- •Давление покоящейся жидкости.
- •Уравнение гидростатики Эйлера.
- •Уравнение поверхности уровня.
- •37 .Закон паскаля.
- •38. Сообщающиеся сосуды, заполненные однородной жидкостью
- •39.Закон Архимеда.
- •40. Механика движущихся жидкостей. Расход жидкости. Уравнение неразрывности струи жидкости.
- •41.Уравнение Бернулли. Формула Торричелли.
- •42.Ламинарное и турбулентное течение жидкости. Число Рейнольдса.
- •43.Колебательное движение. Характеристики колебаний.
- •44.Собственные колебания.
- •45.Затухающие колебания.
- •46.Вынужденные колебания.
Работа упругих сил.
На гладкой
горизонтальной плоскости находится
тело, скрепленное пружиной жесткости
с
вертикальной стенкой (рис.55).
Если под действие
внешней силы
пружина растягивается на
,
возникает сила упругости пружины,
равная в пределах упругих деформаций
.
Элементарная работа упругих сил по
перемещению тела из этого положения на
равна:
Работа же силы на
конечном перемещении:
(238)
где – растяжение (удлинение) пружины.
Работа и кинетическая энергии. Потенциальная энергия. Закон сохранения энергии
Если на тело массы
m
действует постоянная сила
,
работа ее на перемещении
:
т.е. равна разности кинетических энергий тела в конце и в начале перемещения.
Аналогичный
результат можно получить и для переменной
силы. Для этого разобьем все перемещение
на малые участки, в пределах которых
силу можно считать постоянной и ее
работу вычислить по (239):
,
,
На всем перемещении работа силы равна:
(240)
Если же на тело действуют дополнительно силы трения, получаем:
(241)
где:
и
- скорость тела в конце и в начале
перемещения, А
- работа сил трения.
Следовательно,
работа силы
равна:
Потенциальная энергия.
Потенциальной
энергией называют энергию, определяемую
конфигурацией системы, относительным
расположением отдельных взаимодействующих
тел. выражение для потенциальной энергии
для произвольного взаимодействия
записать сложно, обычно определяют ее
изменение относительно уровня, условно
принятого за нулевой. например,
потенциальная энергия тела массы m в
поле тяготения Земли, находящегося на
высоте h над ее поверхностью:
а на поверхности:
Изменение
потенциальной энергии тела относительно
поверхности Земли:
При
«
(225) принимает вид:
Таким выражением и пользуются, как правило, при расчетах. Здесь потенциальная энергия отсчитывается от определенного уровня (поверхности Земли), на которое она условно принята нулевой.
Такой подход оправдан тем, что при изменениях конфигурации систем изменение состояния определяется не самим значением потенциальной энергии, а только изменением ее.
Нормировка потенциальной энергии, закон сохранения энергии.
Положим, что в замкнутой консервативной системе выделены состояния 1, 2 и 3, условно принятое за исходное, При переходе из состояний 1, 2 в исходное (рис. 57) работа консервативных сил равна:
(246)
(247)
откуда:
(248)
Т.е. для любых состояний системы кинетическая энергия в этом состоянии и работа внутренних сил по переходу из выбранного состояния в исходное - величина постоянная для всех состояний системы. При этом знак работы определяется выбором исходного состояния. Для расчетов важно, чтобы работа сил на любом переходе имела одинаковый знак, поэтому в выражении (248) к значению работы надо добавить такую положительную величину , чтобы:
Сама проделанная
операция выбора
называется нормировкой потенциальной
энергии, а сумма
- потенциальной энергией системы в
данном состоянии. С учетом сказанного:
(249)
для всех состояний системы. Это и есть закон сохранения механической энергии.
Пример нормировки приведен в предыдущем параграфе.
Момент инерции твёрдого тела. Теорема Штейнера. Моменты инерции тел простой формы.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Абсолютно твердым телом называют абсолютно неизменяемую систему точек, отдельных частиц тела, поэтому к абсолютно твердому телу можно применить уже описанные законы динамики системы точек при условии ее неизменяемости.
