Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Готовые шпоры по Механике!.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
3.89 Mб
Скачать

1.Определение положения точки в пространстве. Вектор перемещения.

Для описания движения точки, т.е. изменения ее положения с течением времени, прежде всего, надо в любой момент времени ука­зать ее местоположение координатным или векторным способом. Оба способа задания положения тела в пространстве эквивалентны, т.е. зная координаты точки, можно указать ее радиус-вектор, и наоборот. Из рис. 1 видно, что радиус-вектор представить можно

д иагональю прямоугольного параллелепипеда со сторонами, численно равными координатам точки Ха, Ya и Za. Отсюда очевидна связь модуля радиус-вектора точки с ее координатами:

Для определения направления радиус-вектора в пространстве можно определить углы , , , которые радиус-вектор образует с координатными осями OX, OY, и OZ соответственно. Тогда:

Таким образом, зная координаты точки, можно определить величину (1) радиус-вектора, и его направление в пространстве по так называемым направляющим косинусам (2), (3) и (4).

П ри движении точки ее координаты и радиус-вектор с течением времени изменяются, для определения характеристик движения вводят три вектора: перемещения, скорости и ускорения.

1.2.Вектор перемещения.

Рис. 2

Для определения перемещения точки в пространстве вводят вектор перемещения.

Н апример, за промежуток времени t точка перемещается из положения 1 в положение 2 (рис. 2), определяемые векторным способом указанием радиус-векторов и ; вектором перемещения называют вектор, проведенный из начального положения 1 в конечное 2 перемещаемого тела. Из векторного треугольника видно, что вектор перемещения равен приращению радиус-вектора точки.

Наряду с изменением радиус-вектора точки происходит изменение ее координат, т.е. перемещение точки вдоль отдельных координатных направлений. Из рис.3 видно, что

Вектор перемещения за конечный промежуток времени в общем случае не совпадает с направлением движения (направлением касательной к траектории движения). Очевидно, что эти направления будут совпадать в общем случае движения только для бесконечно малых перемещений точки .

  1. Вектор скорости. Вектор ускорения. Тангенциальное и нормальное ускорение

Вектором скорости называют вектор, определяющий быстроту и направление движения.

В ектором средней скорости называют отношение вектора перемещения к промежутку времени, за который это перемещение происходит:

Так как в произвольном случае движения вектор перемещения за конечный промежуток времени не определяет точно направление движения, это не может сделать и вектор средней скорости. Следо­вательно, необходимо рассматривать перемещения за бесконечно ма­лые промежутки времени.

Вектором истинной (мгновенной) скорости называют предел, к которому стремится значение вектора средней скорости при бесконечном убывании промежутка времени:

Так как при движении тела в общем случае изменяются все три его координаты, часто бывает удобным рассматривать скорость дви­жения точки вдоль отдельных координатных направлений (компоненты или составляющие вектора скорости). Компоненты средней скорости равны:

К омпоненты же мгновенной скорости определяются как

В ектор скорости с его компонентами связан такими же по виду соотношениями, как радиус-вектор с

координатами точек: