
- •1.Определение положения точки в пространстве. Вектор перемещения.
- •1.2.Вектор перемещения.
- •Вектор скорости. Вектор ускорения. Тангенциальное и нормальное ускорение
- •В ектор Ускорения
- •Кинематика твердого тела. Число степеней свободы. Поступательное движение твердого тела.
- •4 Вращательное движение твердого тела.
- •5 Движение отдельных точек вращающегося твердого тела.
- •6 Плоское движение твердого тела
- •7 Сила. Сложение сил и разложение силы на составляющие. Проекции силы на плоскость и ось.
- •Статическое и динамическое проявление сил. Законы Ньютона. Принцип независимости действия сил.
- •9.Момент силы относительно произвольного центра. Момент силы относительно произвольной оси. Момент силы относительно произвольного центра.
- •Момент силы относительно произвольной оси.
- •Основной закон динамики. Основной закон динамики. Уравнение моментов для тела движущего по окружности.
- •Движение тел в поле центральных сил
- •Основной закон динамики системы материальных точек.
- •Уравнения моментов для системы материальных точек относительно произвольного центра, произвольной оси.
- •Основной закон динамики тела переменной массы (уравнение Мещерского)
- •15. Первое и второе соотношение Циолковского.
- •Второе соотношение Циолковского.
- •Относительность механического движения. Галилеевы преобразования координат и закон сложения скоростей.
- •7.1.Относительность механического движения.
- •Постулаты Эйнштейна. "Радиолокационный" метод (метод коэффициента "k ").
- •Замедление" хода времени. Относительная скорость.
- •Сравнение поперечных размеров тел. Эффект "сокращения" длин.
- •Преобразования Лоренца. Интервал. Инвариантность интервала.
- •Релятивистская масса, релятивистский импульс. Релятивистское уравнение движения.
- •Неинерциальные системы отсчёта. Силы инерции. Силы инерции во вращающихся системах отсчета. Силы инерции Кориолиса.
- •Силы трения. Сухое трение. Силы трения качения.
- •Вязкое трение. Движение тел в сопротивляющейся среде. Вязкое трение
- •Упругие силы. Продольное сжатие и растяжение. Закон Гука.
- •Продольное сжатие и растяжение.Закон Гука.
- •Деформация сдвига и кручения.
- •Деформация кручения.
- •Закон всемирного тяготения.
- •Потенциальная энергия гравитационного взаимодействия, гравитационный потенциал. Связь напряжённости и потенциала поля.
- •Работа и энергия. Работа силы тяжести. Работа упругих сил.
- •Работа упругих сил.
- •Работа и кинетическая энергии. Потенциальная энергия. Закон сохранения энергии
- •Потенциальная энергия.
- •Нормировка потенциальной энергии, закон сохранения энергии.
- •Момент инерции твёрдого тела.
- •Момент инерции однородного шара относительно его центра.
- •Теорема Штейнера.
- •Кинетическая энергия твёрдого тела для различных типов движения. Поступательное движение
- •Вращательное движение
- •Плоское движение тела
- •Гироскопы. Прецессия волчка. Гироскопы.
- •Прецессия волчка.
- •Давление покоящейся жидкости.
- •Уравнение гидростатики Эйлера.
- •Уравнение поверхности уровня.
- •37 .Закон паскаля.
- •38. Сообщающиеся сосуды, заполненные однородной жидкостью
- •39.Закон Архимеда.
- •40. Механика движущихся жидкостей. Расход жидкости. Уравнение неразрывности струи жидкости.
- •41.Уравнение Бернулли. Формула Торричелли.
- •42.Ламинарное и турбулентное течение жидкости. Число Рейнольдса.
- •43.Колебательное движение. Характеристики колебаний.
- •44.Собственные колебания.
- •45.Затухающие колебания.
- •46.Вынужденные колебания.
1.Определение положения точки в пространстве. Вектор перемещения.
Для описания движения точки, т.е. изменения ее положения с течением времени, прежде всего, надо в любой момент времени указать ее местоположение координатным или векторным способом. Оба способа задания положения тела в пространстве эквивалентны, т.е. зная координаты точки, можно указать ее радиус-вектор, и наоборот. Из рис. 1 видно, что радиус-вектор представить можно
д
иагональю
прямоугольного параллелепипеда со
сторонами, численно равными координатам
точки Ха,
Ya
и Za.
Отсюда очевидна связь модуля радиус-вектора
точки с ее координатами:
Для определения направления радиус-вектора в пространстве можно определить углы , , , которые радиус-вектор образует с координатными осями OX, OY, и OZ соответственно. Тогда:
Таким образом, зная координаты точки, можно определить величину (1) радиус-вектора, и его направление в пространстве по так называемым направляющим косинусам (2), (3) и (4).
П
ри
движении точки ее координаты и
радиус-вектор с течением времени
изменяются, для определения характеристик
движения вводят три вектора: перемещения,
скорости и ускорения.
1.2.Вектор перемещения.
Рис. 2
Для определения перемещения точки в пространстве вводят вектор перемещения.
Н
апример,
за промежуток времени t
точка перемещается из положения 1 в
положение 2 (рис. 2), определяемые векторным
способом указанием радиус-векторов
и
; вектором перемещения называют
вектор, проведенный из начального
положения 1 в конечное 2 перемещаемого
тела. Из векторного треугольника видно,
что вектор перемещения равен приращению
радиус-вектора точки.
Наряду с изменением радиус-вектора точки происходит изменение ее координат, т.е. перемещение точки вдоль отдельных координатных направлений. Из рис.3 видно, что
Вектор перемещения
за конечный промежуток времени в общем
случае не совпадает с направлением
движения (направлением касательной к
траектории движения). Очевидно, что эти
направления будут совпадать в общем
случае движения только для бесконечно
малых перемещений точки .
Вектор скорости. Вектор ускорения. Тангенциальное и нормальное ускорение
Вектором скорости называют вектор, определяющий быстроту и направление движения.
В
ектором
средней скорости называют отношение
вектора перемещения к промежутку
времени, за который это перемещение
происходит:
Так как в произвольном случае движения вектор перемещения за конечный промежуток времени не определяет точно направление движения, это не может сделать и вектор средней скорости. Следовательно, необходимо рассматривать перемещения за бесконечно малые промежутки времени.
Вектором истинной (мгновенной) скорости
называют предел, к которому стремится
значение вектора средней скорости при
бесконечном убывании промежутка времени:
Так как при движении тела в общем случае изменяются все три его координаты, часто бывает удобным рассматривать скорость движения точки вдоль отдельных координатных направлений (компоненты или составляющие вектора скорости). Компоненты средней скорости равны:
К
омпоненты
же мгновенной скорости определяются
как
В
ектор
скорости с его компонентами связан
такими же по виду соотношениями, как
радиус-вектор с
координатами точек: