
- •1. Кинематика материальной точки. Система отсчета. Траектория, перемещение, скорость, ускорение. Равномерное и равнопеременное прямолинейное движение.
- •2. Криволинейное движение. Нормальное и тангенсальное ускорения.
- •3. Движение точки по окружности. Угловые перемещение, ускорение, скорость. Связь между линейными и угловыми характеристиками.
- •4. Динамика материальной точки. Инерциальные системы отсчета и первый закон Ньютона.
- •5. Фундаментальные взаимодействия. Силы различной природы(упругие, гравитационные, трения). Второй закон Ньютона. Масса. Третий закон Ньютона.
- •6. Импульс системы материальных точек. Уравнение движения центра масс. Закон сохранения импульса.
- •7. Уравнение движения тела переменной массы ( уравнение Мещерского).
- •8. Момент импульса и момент силы. Уравнение моментов. Закон сохранения момента импульса. Гироскопические явления.
- •9. Вращение твердого тела вокруг неподвижной оси. Основной закон динамики вращательного движения абсолютно твердого тела. Момент инерции.
- •10. Расчет момента инерции тел простой формы. Теорема Штейнера.
- •11. Кинетическая энергия материальной точки и абсолютно твердого тела.
- •12. Работа переменной силы, мощность. Потенциальные и непотенциальные поля. Консервативные и диссипативные силы. Потенциальная энергия.
- •13. Закон всемирного тяготения. Поле тяготения, его напряженность и потенциальная энергия гравитационного взаимодействия.
- •14. Работа по перемещения тела в поле тяготения. Космические скорости.
- •15. Соударения тел. Упругое и неупругое взаимодействия.
- •16. Колебательное движение и его характеристики: смещение, амплитуда, фаза, циклическая частота, период, скорость, ускорение.
- •17. Векторные диаграммы для представления гармонических колебаний. Дифференциальное уравнение гармонических колебаний. Энергия колебательного движения.
- •18. Пружинный и физический маятники.
- •19. Сложение параллельных колебаний одинаковой и разной частоты. Биения. Сложения колебаний одинаковой частоты
- •Сложение колебаний разной частоты
- •20. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •21. Свободные затухающие колебания. Характеристики затухания: коэффициент затухания, время релаксации, декремент затухания, добротность колебательной системы.
- •22 Вынужденные колебания. Резонанс.
- •24. Термодинамическая система параметры состояния термодинамической системы. Основные положения молекулярно-кинетической теории газов.
- •25. Закон равномерного распределения энергии по степеням свободы молекул. Основное уравнение молекулярно-кинетической теории газов.
- •26. Закон Максвелла распределения молекул по скоростям теплового движения. Барометрическая формула. Распределение Больцмана.
- •27. Среднее число столкновений и средняя длина свободного движения молекул.
- •28. Первый закон термодинамики. Работа, теплота, теплоемкость, ее виды.
- •29. Политропный процесс, его частные случаи: изобарный, изотермический, адиабатный, изохорный.
- •30. Второй закон термодинамики. Энтропия. Тепловые двигатели и холодильные машины. Цикл Карно.
25. Закон равномерного распределения энергии по степеням свободы молекул. Основное уравнение молекулярно-кинетической теории газов.
Число степеней свободы – это число независимых величин с помощью которых может быть задано положение системы. (1 атом =3 ст., 2 атома =5ст. 3 атома=6ст.)
Закон Больцмана о равномерном распределении энергии по степеням свободы молекул: для статической системы, находящейся в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная КТ/2 , а на каждую колебательную – КТ
средняя энергия приходящаяся на одну степень свободы:
У одноатомной молекулы i = 3, тогда для одноатомных молекул:
для двухатомных молекул:
Таким образом, на среднюю кинетическую энергию молекулы, имеющей i-степеней свободы, приходится:
Молекулярно-кинетическая теория (сокращённо МКТ) — теория, рассматривающая строение вещества с точки зрения трёх основных приближенно верных положений:
1) все тела состоят из частиц, размером которых можно пренебречь: атомов, молекул и ионов;
2) частицы находятся в непрерывном хаотическом движении (тепловом);
3) частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.
Основное уравнение молекулярно-кинетической теории идеального газа:
Уравнение, связывающее макроскопическую величину – давление с микроскопическими величинами, характеризующими молекулы.
p – давление газа, n - концентрация молекул, m0 - масса молекулы.
26. Закон Максвелла распределения молекул по скоростям теплового движения. Барометрическая формула. Распределение Больцмана.
Закон Максвелла распределения молекул по скоростям теплового движения
Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на
малые интервалы, равные dv, то на каждый интервал скорости будет приходиться некоторое число молекул dN(v), имеющих скорость, заключенную в этом интервале. Функция f(v) определяет относительное число молекул dN (v)/N, скорости которых лежат в интервале от v до v+dv, т. е.
откуда f(v)=dN(v)/Ndv.
Применяя методы теории вероятностей, Максвелл нашел функцию f(v) — закон для распределения молекул идеального газа по скоростям:
Из (44.1) видно, что конкретный вид функции зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т).График функции (44.1) приведен на рис. Так как при возрастании v множитель уменьшается быстрее, чем растет множитель v2, то функция f(v), начинаясь от нуля, достигает максимума при vв и затем асимптотически стремится к нулю. Кривая несимметрична относительно vв.
Барометрическая формула. Распределение Больцмана
Выражение (45.2) называется барометри ческой формулой. Она позволяет найти атмосферное давление в зависимости от высоты или, измерив давление, найти вы соту. Так как высоты обозначаются отно сительно уровня моря, где давление счита ется нормальным, то выражение (45.2) может быть записано в виде
где р — давление на высоте h.
Прибор для определения высоты над земной поверхностью называется высото мером (или альтиметром). Его работа ос нована на использовании формулы (45.3). Из этой формулы следует, что давление с высотой убывает тем быстрее, чем тяже лее газ.
Барометрическую формулу (45.3) можно преобразовать, если воспользо ваться выражением (42.6) p=nkT:
где n — концентрация молекул на высо те h, n0 — то же на высоте h=0. Так как M = m0NA (NA— постоянная Авогадро, m0 —масса одной молекулы), а R=kNA, то
где m0gh=П — потенциальная энергия молекулы в поле тяготения, т. е.
Выражение (45.5) называется распре делением Больцмана во внешнем потенци альном поле. Из него следует, что при постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул.