
- •Мат.Статистика
- •1)Измерение социальных явлений и процессов. Измерительные шкалы: номинальные, ранговые (порядковые) и интервальные.
- •6) Интервальные оценки неизвестных параметров распределения по выборке. Доверительная вероятность. Доверительные интервалы.
- •7) Задачи интервального оценивания параметров нормального закона распределения.
- •8) Расчет объема выборочной совокупности.
- •9)Проверка статистических гипотез. Понятие статистической гипотезы. Уровень значимости. Нулевая гипотеза.
- •10)Проверка гипотезы о равенстве средних.
- •11) Проверка гипотез о законе распределения
- •12) Ранговый критерий проверки статистических гипотез Ван-дер-Вардена.
- •13) Понятие корреляционной зависимости между выборочными случайными величинами.
- •14) Связь номинальных признаков. Таблицы сопряженности. Коэффициент ассоциации Пирсона.
- •15) Связь порядковых признаков. Коэффициент корреляции рангов Спирмена.(первая чать вопроса не найдена!!!!!)
- •16) Связь количественных признаков. Корреляционная таблица. Линейный коэффициент корреляции. Уравнение регрессии.
- •Коэффициент линейной корреляции Пирсона
- •Уравнение регрессии
- •17) Случайное событие. Составные и элементарные события.
- •18) Достоверное и невозможное событие. Полная группа событий.
- •19) Произведение и сумма событий.
- •20) Понятие вероятности события. Классическая формула расчета вероятностей. Свойства вероятностей.
- •21) Независимые и зависимые события. Условная вероятность. Теорема умножения вероятностей.
- •22) Несовместные и совместные события. Теорема сложения вероятностей.
- •23) Формула полной вероятности. Формула Байеса.
- •24) Понятие дискретной случайной величины. Закон распределения. Ряд распределения. Функция распределения дискретной случайной величины.
- •25) Математическое ожидание и дисперсия дискретной случайной величины. Среднее квадратическое отклонение.
- •26) Функция распределения, плотность распределения непрерывной случайной величины, их взаимосвязь и свойства.
- •27) Математическое ожидание и дисперсия непрерывной случайной величины. Среднее квадратическое отклонение
- •28) Плотность распределения непрерывной случайной величины. Закон равномерной плотности.
- •29) Нормальный закон распределения случайной величины.
- •30) Функция Лапласа. Вероятность попадания величины, распределенной по нормальному закону, на заданный интервал.
- •31) Закон больших чисел.
- •32) Центральная предельная теорема Ляпунова.
32) Центральная предельная теорема Ляпунова.
ТеоремаЕсли случайная величина Х представляет собой сумму очень большого числа взаимно независимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то Х имеет распределение, близкое к нормальному.
Теорема Ляпунова объясняет широкое распространение нормального закона распределения и поясняет механизм его образования. Теорема позволяет утверждать, что всегда, когда случайная величина образуется в результате сложения большого числа независимых случайных величин, дисперсии которых малы по сравнению с дисперсией суммы, закон распределения этой случайной величины оказывается практически нормальным законом. А поскольку случайные величины всегда порождаются бесконечным количеством причин и чаще всего ни одна из них не имеет дисперсии, сравнимой с дисперсией самой случайной величины, то большинство встречающихся в практике случайных величин подчинено нормальному закону распределения.