
- •1.Генетика. Предмет, задачи и методы генетики.
- •3. Прокариоты и эукариоты. Клеточное строение организмов. Органеллы клетки и их функции.
- •Цитоплазма
- •Эндоплазматическая сеть
- •Клеточное ядро.
- •Митохондрии
- •4. Материальные основы наследственности: кариотип, хромосомы, их локализация и строение. Понятие об эписомах и плазмидах.
- •5. Общие представления о молекулярных аспектах наследственности: особенности строения и функций днк, рнк и белков. Понятие о генетическом коде.
- •Строение и функции днк
- •Строение и функции рнк
- •6. Виды деления клеток. Митоз. Его фазы, продолжительность и биологическое значение. G1, s и g2 этапы. Амитоз, эндомитоз и политения.
- •7. Половое и бесполое размножение. Особенности мейоза, его фазы, их длительность. Понятие о гаметогенезе.
- •8. Гаметогенез и оплодотворение у растений.
- •9. Гаметогенез и оплодотворение у животных. Моно- и полиспермия. Понятие о монозиготных и дизиготных близнецах.
- •10. Гибридологический метод Менделя. Используемые термины и обозначения. Генотип и фенотип. Доминирование и рецессивность. Дискретность признаков. Аллели. Понятие о гаплоидности и диплоидности.
- •11. Гомо - и гетерозиготы. I и II законы Менделя. Схематическое изображение законов. Решётка Пеннета.
- •Моногибридное скрещивание
- •Дигибридное скрещивание
- •12.Реципрокное, возвратное и анализирующее скрещивания. Схематическое изображение этих видов скрещиваний. Необходимость их использования.
- •13.Неполное доминирование. Схематическое изображение. Генотип и фенотип в этих условиях. Неполное доминирование
- •14.Дигибридное скрещивание. Трии- полигибридное скрещивание. Схематическое изображение. Обозначения признаков, их передача потомкам, генотипы и фенотипы в этих опытах. Дигибридное скрещивание
- •Полигибридное скрещивание
- •15.Взаимодействие генов. Комплементарность. Схематическое изображение. Типы расщеплений в потомстве 9:3:3:1, 9:6:1, 9:7 и др. Примеры.
- •17. Полимерия. Кумулятивная и некумулятивная. Схематическое изображение. Типы расщеплений в потомстве 15:1, 63:1 и др. Примеры.
- •18.Модифицирующее и плейотропное действие генов. Привести пример. Влияние среды на экспрессивность признака. Понятие о пенетрантности.
- •19. Генетика пола. Первичные и вторичные половые признаки. 4 типа хромосомного механизма определения пола.
- •Первичные и вторичные половые признаки
- •Генное определение пола
- •Хромосомное определение пола
- •Множественное определение пола Определение пола с помощью множественных половых хромосом
- •Гапло-диплоидное (геномное) определение пола
- •Средовое определение пола
- •Гормональное определение пола
- •20.Балансовая теория пола. Синдромы человека в связи с числом половых хромосом в кариотипе особи. Роль условий среды в определении пола. Возможности управления полом будущих организмов.
- •22.Линейное расположение генов в хромосомах. Группы сцепления. Схематическое изображение сцепления признаков и их наследования.
- •Рестриктные карты
- •24.Понятие о цитоплазматической наследственности. Цитоплазматическая мужская стерильность. Цитоплазматические гены и днк. Роль цитоплазматических генов в клеточной наследственности.
- •25. Понятие об изменчивости. Наследственная (мутационная и рекомбинантная) и ненаследственная (фенотипическая) изменчивость. Принципиальные различия модификаций и мутаций. Норма реакции. Примеры.
- •Комбинативная изменчивость
- •Мутационная изменчивость
- •26.Причины генных мутаций. Виды классификаций мутаций. Примеры.
- •28. Внутрихромосомные изменения и их последствия для организма. Дефишенси, делеции, дупликации, инверсии, инсерции, транспозиции. Эффект положения гена.
- •29.Изменчивость за счет вариаций в числе хромосом и их последствия для организмов. Гаплоиды и полиплоиды, сбалансированные и несбалансированные полиплоиды. Практическое использование этого явления.
- •Индуцированный мутагенез
- •32.Ультрафиолет и его мутагенное действие. Причины его вредного влияния на наследственный аппарат клетки. Способы защиты от ультрафиолета.
- •33.Химические мутагены. Их классификации. Проблемы экологии в этом аспекте.
- •35.Виды отбора: стабилизирующий, дизруптивный, элиминирующий. Их последствия для сохранения популяций, появления новых видов.
- •Дизруптивный отбор
- •36.Волны жизни, дрейф генов и их последствия для популяции, появления новых видов.
- •38.Генетика — основа селекции. Породы и сорта. Понятие о модели сорта или породы.
- •39. Гибриды и явление гетерозиса. Пути и методы получения селекционного материала. Использование мутагенеза в селекции.
- •Мутагенез и рекомбиногенез сельскохозяйственных растений
29.Изменчивость за счет вариаций в числе хромосом и их последствия для организмов. Гаплоиды и полиплоиды, сбалансированные и несбалансированные полиплоиды. Практическое использование этого явления.
Геномные мутации затрагивают геном клетки и вызывают изменение числа хромосом в геноме. Это может происходить за счет увеличения или уменьшения числа гаплоидных наборов или отдельных хромосом. К геномным мутациям относят полиплоидию и анеуплоидию.
Полиплоидия — геномная мутация, состоящая в увеличении числа хромосом, кратному гаплоидному. Клетки с разным числом гаплоидных наборов хромосом называются: 3n — триплоидами, 4n тетраплоидами и т.д. Полиплоидия приводит к изменению признаков организма: увеличению плодовитости размеров клеток, биомассы. Используется в селекции растений. Полиплоидия известна и у животных, например, у инфузорий, тутового шелкопряда, земноводных.
Анеуплоидия - изменение числа хромосом, некратное гаплоидному набору: 2n + 1; 2n — 1; 2n — 2; 2n +2. У человека такие мутации вызывают патологии: синдром трисомии по Х-хромосоме, трисомия по 21-й хромосоме (болезнь Дауна), моносомия по Х-хромосоме и т.д. Явление анеуплоидии показывает, что нарушение числа хромосом приводит к изменению в строении и снижению жизнеспособности организма.
Гаплоидные клетки — живые клетки, в отличие от диплоидных клеток содержащие одинарный набор хромосом. Каждая хромосома представлена в таких клетках единственной копией, а каждый ген - одним аллелем. Поэтому у гаплоидных организмов проявляются все вновь возникшие мутации (нет явления доминантности и рецессивности). Частным случаем гаплоидных клеток являются гаметы.
Пло́идность — число одинаковых наборов хромосом, находящихся в ядре клетки или в ядрах клеток многоклеточного организма.
Чрезвычайно велико значение П. в становлении новых видов растений. Близкородственные виды растений одного рода часто укладываются в так называемые полиплоидные ряды (пшеницы с 14 или 28, или 42 хромосомами и др.). Морфологические и физиологические преимущества полиплоидных видов позволяют им иногда заселять новые ареалы, недоступные из-за суровых условий для других видов. Установлено, что и в селекции сельскохозяйственных растений человек, не подозревая того, веками вел искусственный отбор полиплоидных форм, от которых ныне получают основную массу пищевых и кормовых белков, жиров и углеводов. Освоение метода экспериментального создания полиплоидов уже привело к внедрению некоторых из них в сельскохозяйственную практику (триплоидные сахарная свекла, перечная мята и др.). Перспективный метод получения полиплоидных форм часто сочетают с искусственной гибридизацией. Полиплоидия — единственный метод преодоления бесплодия гибридов, полученных в результате скрещивания отдаленных видов. В эволюции животных полиплоидия не получила такого значения, как у растений. Этому, по-видимому, препятствовал сложный механизм определения пола (см.) у животных. Однако там, где этот барьер снят, где имеет место партеногенетическое размножение, возникли полиплоидные виды, завоевавшие более или менее обширные ареалы. Случаи возникновения спонтанной полиплоидии у животных наблюдаются так же, как и у растений; освоено и их получение в эксперименте. Это ставит вопрос и об их практическом использовании. Первые шаги уже сделаны в нашей стране В. Л. Астауровым, получившим размножающиеся полиплоиды шелкопряда. Отдельные случаи П. обнаружены и у человека.
30. Понятие о спонтанном и индуцированном мутагенезе. Сходство и различия. Частота появления спонтанных и индуцированных мутаций. Гомологические ряды наследственности. Важность для научного познания наследственности и изменчивости.
Спонтанный мутагенез, т.е. процесс возникновения мутаций в организме в отсутствие намеренного воздействия мутагенами, представляет собой конечный результат суммарного воздействия различных факторов, приводящих к повреждениям генетических структур в процессе жизнедеятельности организма.
Причины возникновения спонтанных мутаций можно разделить на: • экзогенные (естественная радиация, экстремальные температуры и др.); • эндогенные (спонтанно возникающие в организме химические соединения-метаболиты, вызывающие мутагенный эффект; ошибки репликации, репарации, рекомбинации; действие генов-мутаторов и антимутаторои; транспозиция мобильных генетических элементов и др.).
Основным источником спонтанных мутаций служат эндогенные факторы, приводящие к повреждению генов и хромосом в процессе нормального клеточного метаболизма. Результат их действия — ошибки генетических процессов репликации, репарации и рекомбинации.