Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вышка ответы.docx
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
962.47 Кб
Скачать

Предел последовательности

Окрестностью точки x0 называется любой интервал, содержащий эту точку.

δ — окрестностью точки x0 Uδ (x0) называется интервал длиной 2δ с центром в этой точке.

Определение предела последовательности

Число а называется пределом последовательности {xn}, если для любого ε > 0 найдется номер n0 = n0(ε) ∈ N такой, что для всех номеров n > n0 выполняется неравенство |xn — a| <ε

Число b называется пределом последовательности {xn}=x1, x2,..., xn (lim {xn} = b; n→∞)

Последовательность {xn}, имеющая конечный предел а, называется сходящейся. Последовательность, имеющая бесконечный предел или вообще не имеющая предела, называется расходящейся

Теорема Больцано-Вейерштрасса

     Теорема. Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

     Доказательство. Так как последовательность ограничена, то она имеет хотя бы одну предельную точку x. В таком случае из этой последовательности можно выделить подпоследовательность, сходящуюся к точке x.

     Замечание 1. Из любой ограниченной последовательности можно выделить монотонную подпоследовательность.

     В самом деле, в силу теоремы Больцано-Вейерштрасса из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность, а из этой подпоследовательности можно выделить монотонную подпоследовательность.

     Замечание 2. Пусть {xn} - ограниченная последовательность, элементы которой находятся в сегменте [ab]. Тогда предел с любой сходящейся подпоследовательности   также находится на сегменте [ab].

     Действительно, так как  , то в силу следствия 2 выполняются неравенства a ≤ c ≤ b. Это и означает, что c находится на сегменте [ab].

     Отметим, что в отдельных случаях и из неограниченной последовательности также можно выделить сходящуюся подпоследовательность. Например, последовательность 1, 1/2, 2, 1/3, ..., n, 1/(n+1), ... неограниченная, однако подпоследовательность 1/2, 1/3, ..., 1/n, ... ее элементов с четными номерами сходится. Но не из каждой неограниченной последовательности можно выделить сходящуюся подпоследовательность. Например, любая подпоследовательность неограниченной последовательности 1, 2, ..., n, ... расходится. Поэтому теорему Больцано-Вейерштрасса, вообще говоря, нельзя распространить на неограниченные последовательности.

Критерий Коши. Функция f имеет конечный предел в точке x0 тогда и только тогда, когда

Особую роль играют два замечательных предела:

Если  , то

34.

ОДНОСТОРОННИЙ ПРЕДЕЛ

- предел функции в нек-рой точке справа или слева. Пусть f - отображение упорядоченного множества X(напр., множества, лежащего на числовой прямой), рассматриваемого как топологич. пространство с топологией, порожденной отношением порядка, в топологич. пространство Y и   . Предел отображения f по любому интервалу   наз. пределом слева отображения f и обозначают

(он не зависит от выбора  ), а предел по интервалу   наз. пределом справа и обозначают

(он не зависит от выбора  ). Если точка   является предельной как слева, так и справа для множества определения функции f, то обычный предел

по проколотой окрестности точки х 0 (в этом случае его наз. также двусторонним, в отличие от односторонних пределов) существует тогда и только тогда, когда в точке х 0 существуют пределы слева и справа и они равны между собой.

Преде́л фу́нкции — одно из основных понятий математического анализа. Функция   имеет предел   в точке   если для всех значений  , достаточно близких к  , значение   близко к  .

35.

БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ И ИХ ОСНОВНЫЕ СВОЙСТВА

Функция y=f(x) называется бесконечно малой при xa или при x→∞, если   или  , т.е. бесконечно малая функция – это функция, предел которой в данной точке равен нулю.

П римеры.

  1. Функция f(x)=(x-1)2 является бесконечно малой при x→1, так как   (см. рис.).

  2. Функция f(x) = tgx – бесконечно малая при x→0.

  3. f(x) = ln (1+x)– бесконечно малая при x→0.

  4. f(x) = 1/x– бесконечно малая при x→∞.

Установим следующее важное соотношение:

Теорема. Если функция y=f(x) представима при xaв виде суммы постоянного числа b и бесконечно малой величины α(x): f (x)=b+ α(x) то  .

Обратно, если  , то f (x)=b+α(x), где a(x) – бесконечно малая при xa.

Доказательство.

  1. Докажем первую часть утверждения. Из равенства f(x)=b+α(x) следует |f(x) – b|=| α|. Но так как a(x) – бесконечно малая, то при произвольном ε найдется δ – окрестность точки a,при всех x из которой, значения a(x) удовлетворяют соотношению |α(x)|<ε. Тогда |f(x) – b|< ε. А это и значит, что  .

  2. Если  , то при любом ε>0 для всех х из некоторой δ – окрестность точки a будет |f(x) – b|< ε. Но если обозначимf(x) – b= α, то |α(x)|<ε, а это значит, что a – бесконечно малая.

Рассмотрим основные свойства бесконечно малых функций.

Теорема 1. Алгебраическая сумма двух, трех и вообще любого конечного числа бесконечно малых есть функция бесконечно малая.

Доказательство. Приведем доказательство для двух слагаемых. Пусть f(x)=α(x)+β(x), где  и  . Нам нужно доказать, что при произвольном как угодно малом ε>0 найдетсяδ>0, такое, что для x, удовлетворяющих неравенству |x – a|<δ, выполняется |f(x)|< ε.

Итак, зафиксируем произвольное число ε>0. Так как по условию теоремы α(x) – бесконечно малая функция, то найдется такое δ1>0, что при |x – a|<δ1 имеем |α(x)|< ε/2. Аналогично, так как β(x) – бесконечно малая, то найдется такое δ2>0, что при |x – a|<δ2 имеем | β(x)|< ε/2.

Возьмем δ=min{ δ1, δ2}.Тогда в окрестности точки a радиуса δбудет выполняться каждое из неравенств |α(x)|< ε/2 и | β(x)|< ε/2. Следовательно, в этой окрестности будет

|f(x)|=| α(x)+β(x)| ≤ |α(x)| + | β(x)| < ε/2 + ε/2= ε,

т.е. |f(x)|<ε, что и требовалось доказать.

Теорема 2. Произведение бесконечно малой функции a(x) на ограниченную функцию f(x) при xa (или при x) есть бесконечно малая функция.

Доказательство. Так как функция f(x) ограничена, то существует число М такое, что при всех значениях x из некоторой окрестности точки a|f(x)|≤M. Кроме того, так как a(x) – бесконечно малая функция при xa, то для произвольного ε>0 найдется окрестность точки a, в которой будет выполняться неравенство |α(x)|< ε/M. Тогда в меньшей из этих окрестностей имеем | αf|< ε/M= ε. А это и значит, что af – бесконечно малая. Для случая x доказательство проводится аналогично.

Из доказанной теоремы вытекают:

Следствие 1. Если  и  , то  .

Следствие 2. Если  и c=const, то  .

Теорема 3. Отношение бесконечно малой функции α(x) на функцию f(x), предел которой отличен от нуля, есть бесконечно малая функция.

Доказательство. Пусть  . Тогда 1/f(x) есть ограниченная функция. Поэтому дробь  есть произведение бесконечно малой функции на функцию ограниченную, т.е. функция бесконечно малая.

Пусть f1 (x)  и   f 2 (x) бесконечно малые величины при  , т.е.        и       .

1. Сумма (разность) бесконечно малых величин есть величина бесконечно малая:

.                      (4.17)

2. Произведение бесконечно малых величин есть величина бесконечно малая:

.                           (4.18)

3. Произведение бесконечно малой величины на константу С или на функцию, имеющую конечный предел  , есть величина бесконечно малая:

.                       (4.19)

Пусть   и   бесконечно большие величины при  ,  т.е.         и      .

1. Сумма бесконечно больших величин есть величина бесконечно большая:

.                                                   (4.20)

2. Произведение бесконечно больших величин есть величина бесконечно большая:

.                                                   (4.21)

3. Произведение бесконечно большой величины на константу С, или на функцию, имеющую конечный предел  , есть величина бесконечно большая:

                       (4.22)