
- •1. Предмет топографии и геодезии. Связь топографии и геодезии с другими науками
- •2. История развития геодезии. Федеральная служба геодезии и картографии и ее функции
- •3. Эволюция представлений о фигуре Земли. Современные воззрения на фигуру Земли
- •4. Понятие о методах определения фигуры и размеров Земли
- •5. Методы проектирования земной поверхности на плоскость
- •6. Искажения за кривизну Земли при проецировании поверхности Земли на плоскость
- •7. Системы координат, применяемые в геодезии
- •8. Сущность проекции Гаусса-Крюгера и использование ее в геодезии
- •9. Использование проекции Гаусса-Крюгера в геодезии и картографии
- •10. План и карта
- •11. Свойства карты
- •12. Классификация карт
- •13. Элементы общегеографической карты
- •14. Масштабы. Различные способы выражения масштабов
- •15. Масштабный ряд государственных топографических карт
- •16. Разграфка и номенклатура топографических карт
- •17. Условные знаки топографических карт
- •18. Условные знаки общегеографических карт
- •19. Картографическая генерализация
- •20. Основные особенности оформления топографических карт и планов
- •21. Способы изображения рельефа
- •22. Ориентирование линий, истинный и магнитный азимуты, дирекционные углы, румбы, связь между ними
- •23. Элементы взаимного расположения точек в плоской системе координат. Прямая геодезическая задача
- •24. Элементы взаимного расположения точек в плоской системе координат. Обратная геодезическая задача
- •25. Методы определения координат геодезических пунктов
- •26. Триангуляция
- •27Полигонометрия
- •28Трилатерация
- •29Космические методы определения координат
- •30Спутниковые методы определения координат
- •31. Определение координат точек методом засечек
- •32Теодолитный ход и его элементы
- •33Камеральная обработка разомкнутого теодолитного хода
- •39Измерения, и их классификация
- •40Погрешности измерений и их виды
- •41Вероятнейшее значение измеряемой величины
- •42Средняя квадратическая погрешность отдельного измерения и результата измерений
- •43Приборы для измерения линий
- •44Мерная лента. Измерение длин линий мерной лентой. Ошибки измерений расстояний штриховой стальной лентой
- •45Измерение длины наклонной линии и приведение ее на плоскость горизонта
- •46Оптические дальномеры. Сущность определения расстояния
- •47Теория оптического нитяного дальномера и его устройство
- •48 Измерение дальномером наклонных расстояний
- •49Сущность измерения линий свето- и радиоальномерами, их использование в геодезии
- •50Определение неприступных расстояний
- •51Основные части теодолита и их назначение
- •52Уровни в геодезических приборах, их назначение и требования к ним
- •54Измерение горизонтальных углов в теодолитном ходе
- •55Измерение вертикальных углов
- •56Основные источники ошибок при измерении горизонтальных углов
- •57Метод тригонометрического нивелирования
- •58Камеральная обработка хода тригонометрического нивелирования
- •59Основные виды геодезических сетей
- •60Построение государственной плановой сети
- •62Построение государственной нивелирной сети
- •63Методы нивелирования
- •64Сущность геометрического нивелирования. Отклонение визирного луча уровенной поверхности
- •65Типы нивелиров
- •66Основные части уровенного нивелира и их назначение
- •67Нивелир с самоустанавливающейся линией визирования
- •68Геометрические условия, которым должен удовлетворять нивелир
- •62. Исследования реек
- •69Основные источники погрешностей геометрического нивелирования
- •70Производство технического нивелирования. Работа на нивелирной станции
- •71Назначение связующих и плюсовых точек при геометрическом нивелировании
- •72Сущность барометрического нивелирования
- •67. Сущность гидростатического нивелирования
- •73 Сущность мензульной съемки. Общий порядок производства съемки
- •74 Построение съемочной сети для мензульной съемки
- •70. Принадлежности для мензульной съемки
- •75 Основные части кипрегеля ка-2 и их назначение
- •75Основные отличия кипрегеля кн от кипрегеля ка-2
- •73. Вид номограммы в поле зрения кипрегеля ка-2 и использование ее
- •74. Вид номограммы в поле зрения кипрегеля кн и использование ее
- •75.Требования, которым должна удовлетворить мензула, и её принадлежности
- •76. Геометрические условия, которым должен удовлетворять кипрегель
- •77. Подготовка планшета
- •78. Съемка ситуации и рельефа при мензульной съемке
- •76Сущность тахеометрической съемки. Приборы. Тахеометрические ходы
- •78Глазомерная съемка
- •79Общие сведения об аэрофотосъемке местности. Фотокамера
- •80 Плановый и перспективный снимки
- •81 Масштаб горизонтального аэрофотоснимка
- •82Система координат снимка и его главная точка
- •83Основные свойства моно- и бинокулярного зрения
- •84Геометрические свойства аэрофотоснимка
- •85Измерение высот по аэрофотоснимкам, понятие об угловом и продольном параллаксе
- •86Сущность и этапы контурно-комбинированной съемки
- •87Понятие о стереотопографической съемке. Основные этапы
- •88Сущность фототеодолитной съемки
56Основные источники ошибок при измерении горизонтальных углов
В одномерном пространстве (на линии) положение точки фиксируется значением одной координаты X, и ошибка положения точки Mp равна средней квадратической ошибке mx этой координаты. Истинное положение точки может находиться в интервале ( X - t * mx ) - ( X + t * mx ), то-есть, в обе стороны от значения X; на практике коэффициент t обычно задают равным 2.0 или 2.50.
В двумерном пространстве (на поверхности) положение точки фиксируется значениями двух координат, и ошибка положения точки должна задаваться двумя величинами: направлением и ошибкой положения по этому направлению. Геометрическая фигура, внутри которой находится истинное положение точки, может иметь разную форму; в частном случае, когда ошибка положения точки по всем направлениям одинакова, получается круг радиуса R = Mp.
Положение точки по двум измерениям получается в пересечении двух линий положения. Для измеренного расстояния S линией положения является окружность радиуса S с центром в исходной пункте A (рис.2.12а); для измеренного угла β с вершиной в исходном пункте A - прямая линия, проведенная под углом β к исходной линии AB (рис.2.12б).
Вследствие ошибок измерений необходимо ввести понятие "полоса положения". Для расстояния S, измеренного со средней квадратической ошибкой ms - это круговой пояс (кольцо) шириной 2 * ms между двумя окружностями радиусами ( S - ms ) и ( S + ms ); для угла β, измеренного с ошибкой mβ - это узкий треугольник с вершиной в точке A и углом при вершине 2 * mβ. Линия положения точки является осью симметрии полосы положения (рис.2.12).
Рис.2.12. Линия положения и "полоса положения" точки P: а) для измеренного расстояния, б) для измеренного угла.
Систематические ошибки имеют определенный источник, направление и величину. Если источник систематической ошибки обнаружен и изучен, то можно получить формулу влияния этой ошибки на результат измерения и затем ввести в него поправку; это исключит влияние систематической ошибки. Пока источник какой-либо систематической ошибки не найден, приходится считать ее случайной ошибкой, ухудшающей качество измерений.
Случайные ошибки измерений обусловлены точностью способа измерений (строгостью теории), точностью измерительного прибора, квалификацией исполнителя и влиянием внешних условий. Закономерности случайных ошибок проявляются в массе, то-есть, при большом количестве измерений; такие закономерности называют статистическими. Освободить результат единичного измерения от случайных ошибок невозможно; невозможно также предсказать случайную ошибку единичного измерения. Теория ошибок занимается в основном изучением случайных ошибок.
Другие источники ошибок:
- приборные ошибки;
- геометрии наблюдений;
- точности моделей, используемых при обработке результатов: математических, физических, геофизических.
57Метод тригонометрического нивелирования
Тригонометрическое нивелирование называют также геодезическим или нивелированием наклонным лучом. Оно выполняется теодолитом; для определения превышения между двумя точками нужно измерить угол наклона и расстояние. В точке А устанавливают теодолит, в точке В - рейку или веху известной высоты V. Измеряют угол наклона зрительной трубы теодолита при наведении ее на верх вехи или рейки (рис.4.38). Длину отрезка LK можно представить как сумму отрезков LC и CK с одной стороны и как сумму отрезков LB и BK с другой. Отрезок LC найдем из ΔJLC: LC = S*tg ν , остальные отрезки обозначены на рисунке.
Рис.4.38
Тогда
LC + CK = LB + BK и S * tg( ν) + i = V + h.
Отсюда выразим превышение h
h = S * tg(ν) + i - V. (4.67)
Выведем формулу превышения из тригонометрического нивелирования с учетом кривизны Земли и рефракции. Вследствие рефракции луч от верхнего конца вехи идет по кривой, а визирная линия трубы будет направлена по касательной к этой кривой в точке J. Визирная линия трубы пересечет продолжение вехи в точке L1, а не L. Проведем уровенные поверхности в точках A, B, J (рис.4.39).
Проведем касательную к уровенной поверхности в точке J и обозначим: высоту прибора - i, высоту вехи - V, горизонтальное проложение линии AB - S.
Превышение точки B относительно A выражается отрезком BK. Отрезок L1K на рис.4.39 можно выразить через его части двумя путями:
L1K = L1E + EF + FK,
L1K = L1L + LB + BK.
Рис.4.39
Отрезок L1E найдем из Δ JL1E. Этот треугольник можно считать прямоугольным, так как угол L1EJ очень мало отличается от прямого, всего лишь на величину центрального угла ε =(S / R)*r. Этот угол при S = 1 км не превосходит 0.5'.
Итак,
L1E = JE * tg(ν),
но поскольку JE = S, то L1E = S * tg(ν).
Отрезок EF выражает влияние кривизны Земли:
EF = p = S2 / 2*R;
отрезок FK равен высоте прибора FK = i; отрезок L1L выражает влияние рефракции:
L1L = r * (S2 / 2*R) * k = p * k;
отрезок LB равен высоте вехи V.
Таким образом,
S * tg(ν) + p + i = r + V + h,
откуда
h = S * tg(ν) + (i - V) + (p - r),
или
h = S * tg(ν) + (i - V) + f. (4.68)
При измерении расстояния с помощью нитяного дальномера формула превышения несколько изменяется; так как S = (Cl + c)* Cos2(ν), то
h = 0.5*(Cl + c)*Sin(2*ν) + i - V + f = h'+ i - V + f,
Величину h'= 0.5*(Cl + c)*Sin(2*ν) называют тахеометрическим превышением.
При S = 100 м величиной f можно пренебречь, так как
f = 0.66 мм . S2 ,
где S - расстояние (в сотнях метров).
Ошибка измерения превышения из тригонометрического нивелирования оценивается величиной от 2 см до 10 см на 100 м расстояния.
При последовательном измерении превышений получается высотный ход; в высотном ходе углы наклона измеряют дважды: в прямом и обратном направлениях.