
- •Москва «КолосС» 2004
- •Глава 1 регуляция физиологических функций
- •1.1. Понятие о гомеостазе
- •1.2. Гуморальные и нервные механизмы регуляции функций
- •1.3. Единство нервной и гуморальной регуляции
- •1.4. Основные принципы регуляции физиологических функций
- •Глава 2 физиология возбудимых тканей
- •2.1. Физиология процессов возбуждения в нервной системе
- •2.1.1. Структурные особенности нервных клеток и волокон
- •2.1.2. Электрические явления в возбудимых тканях
- •3 А Рис. 2.3. Опыты Гальвани (а) и Маттеучи (б), доказывающие наличие электрических потенциалов в нервно-мышечном препарате:
- •2.1.2.1. Ультраструктурная организация клеточной мембраны
- •2 Рис. 2.4. Схема регистрации мембранного потенциала (а) и фрагмент клеточной мембраны (б) нервной клетки:
- •2.1.2.2. Потенциал покоя
- •2.1.2.3. Роль активного транспорта ионов в формировании мембранного потенциала
- •2.1.2.4. Механизмы генерации потенциала действия
- •Р ис. 2.10. Ионный ток через нервную мембрану при различных фиксированных значениях мембранного потенциала
- •2.1.2.5. Ионные каналы
- •2.1.2.6. Свойства потенциала действия
- •2.1.2.7. Распространение возбуждения
- •2.1.2.8. Передача нервного возбуждения между клетками. Представление о синапсах
- •2.2. Физиологические свойства мыщц
- •2.2.1 .Структурные основы сокращения мышц. Поперечнополосатые мышцы
- •2.2.2. Теория скольжения нитей
- •2.2.3. Электромеханическое скольжение
- •2.2.4. Механика мышцы
- •2.2.5. Метаболические группы поперечнополосатых мышц. Гладкие мышцы
- •Глава 3 физиология системы крови
- •3.1. Значение и функции крови
- •3.2. Количество крови в организме
- •3.3. Состав крови
- •3.4. Физико-химические свойства крови
- •3.5. Гемостаз и свертывание крови
- •3.1. Плазменные факторы свертывания крови
- •3.6. Форменные элементы крови
- •3.7. Регуляция кроветворения
- •3.8. Группы крови
- •3.2. Распределение агглютиногенов и агглютининов в крови системы аво
- •Глава 4 физиология иммунной системы
- •4.1. Структура иммунной системы
- •4.1.1. Центральные органы иммунной системы
- •4.1.2. Периферические органы иммунной системы
- •4.1.3. Клетки иммунной системы
- •4.2. Индукция и регуляция иммунного ответа
- •4.2.1. Антигены
- •4.2.2. Активация лимфоцитов
- •4.2.3. Иммунный ответ гуморального типа
- •4.2.4. Антитела
- •4.2.5. Иммунный ответ клеточного типа
- •4.3. Факторы естественной резистентности
- •4.3.1. Естественные барьеры
- •4.3.2. Система фагоцитов
- •III стадия n стадия
- •4.3.3. Система комплемента, пропердин
- •4.3.4. Лизоцим
- •4.3.5. Интерфероны
- •4.3.6. Взаимодействие антиген—антитело
- •Глава 5 физиология пищеварения
- •5.1. Сущность процесса пищеварения
- •5.2. Физиологические основы голода и насыщения
- •5.3. Методы исследования деятельности пищеварительного тракта
- •5.4. Пищеварение в ротовой полости
- •5.5. Пищеварение в желудке
- •5.1. Функциональное значение секреторных клеток желудка
- •Желудочка по Гейденгайну (а) и и. П. Павлову (б):
- •5.6. Особенности желудочного пищеварения у некоторых видов животных
- •5.7. Пищеварение в тонком кишечнике
- •5.8. Пищеварение в толстом кишечнике
- •5.9. Всасывание
- •Ние. 5.15. Схематическое изображение функционирования сократительной системы апикальной части эпителиальных клеток тонкой кишки
- •5.2. Гормоны желудочно-кишечного тракта
- •5.11. Пищеварение у птиц
- •Глава 6 физиология кровообращения
- •6.1. Физиология сердца
- •6.2. Свойства сердечной мышцы
- •6.3. Сердечный цикл и клапанный аппарат сердца
- •6.1. Частота сокращений сердца в 1 мин
- •6.4. Физические явления, связанные с работой сердца
- •6.2. Систолический и минутный объемы крови у животных
- •6.5. Регуляция работы сердца
- •6.6. Движение крови по кровеносным сосудам
- •6.3. Величина артериального давления у животных, мм рт. Ст.
- •6.7. Регуляция движения крови по сосудам
- •6.8. Особенности кровообращения при различных состояниях организма
- •Глава 7 физиология дыхания
- •7.1. Внешнее дыхание
- •7.3. Изменение давления в грудной полости при дыхании:
- •7.1. Частота дыхательных движений в 1 мин
- •7.2. Газообмен в легких
- •7.3. Транспорт газов кровью, газообмен в тканях
- •7.4. Регуляция дыхания
- •Сосудистых
- •7.5. Особенности дыхания у птиц
- •Глава 8 физиология выделительных процессов
- •8.1. Выделительная функция почек
- •8.2. Структурная организация почек
- •8.3. Мочеобразование
- •8.1. Концентрирующая способность почки
- •8.4. Гомеостатическая функция почек
- •8.2. Факторы, влияющие на клубочковую фильтрацию
- •8.3. Факторы, регулирующие канальцевую реабсорбцию
- •8.5. Регуляция процессов образования мочи
- •8.6. Состав и свойства конечной мочи
- •8.4. Объем мочи, выделяемой за сутки
- •8.7. Механизмы выведения мочи
- •8.8. Выделительная функция кожи
- •Глава 9 физиология размножения
- •9.1. Половое созревание и половая зрелость
- •9.1. Половая и физиологическая зрелость самки
- •9.2. Физиология репродуктивной системы самцов
- •9.2. Средние количественные показатели спермы
- •9.3. Физиология репродуктивной системы самок
- •9.3. Особенности половых циклов
- •9.4. Оплодотворение
- •9.5. Беременность
- •9.6. Различные типы плацент у млекопитающих:
- •9.6. Роды
- •9.4. Продолжительность родов
- •9.7. Послеродовой период
- •9.8. Трансплантация зародышей у животных
- •9.9. Особенности размножения птиц
- •Глава 10 физиология лактации
- •10.1. Развитие молочной железы
- •10.1. Химический состав секретов молочной железы, %
- •10.2. Тип плацентации и пассивная передача иммунитета (X -о — отсутствие передачи)
- •10.4. Пассивный перенос материнских антител
- •10.3. Передача пассивного иммунитета
- •10.2. Биосинтез основных компонентов молока
- •10.3. Физико-химические показатели молока
- •10.4. Структурная организация секреторного процесса
- •10.5. Регуляция секреции молока
- •10.6. Выведение молока
- •10.7. Физиологические основы машинного доения
- •Глава 11 физиология обмена веществ и энергии
- •11.1. Терморегуляция
- •11.1. Ректальная температура у различных видов животных
- •11.2. Белковый (азотистый) обмен
- •11.2.1. Основные этапы белкового обмена
- •11.2.2. Регуляция белкового обмена
- •11.3. Углеводный обмен
- •11.3.1. Основные этапы углеводного обмена
- •11.3.2. Регуляция углеводного обмена
- •11.4. Липидный обмен
- •11.4.1. Основные этапы липидного обмена
- •11.4.2. Регуляция липидного обмена
- •11.5. Обмен воды
- •11.2. Концентрация электролитов в жидкостях организма, мэкв/л
- •11.6. Минеральный обмен
- •11.6.1. Физиологическая роль макроэлементов
- •11.6.2. Физиологическая роль микроэлементов
- •11.6.3. Регуляция минерального обмена
- •11.7. Витамины
- •11.7.1. Жирорастворимые витамины
- •11.7.2. Водорастворимые витамины
- •12.1. Механизмы взаимодействия гормона с клетками
- •12.2. Общие механизмы регуляции внутренней секреции
- •12.1. Нейрогормоны гипоталамо-гипофизарной системы
- •12.3. Гипофиз
- •12.4. Щитовидная железа
- •12.5. Надпочечники
- •12.6. Поджелудочная железа. Внутренняя секреция
- •12.7. Эндокринная функция половых желез
- •12.8. Тимус
- •12.9. Эпифиз
- •12.10. Тканевые гормоны
- •12.11. Гормоны и продуктивность животных
- •Глава 13
- •13.1. Нейроны и синапсы
- •13.2. Рефлекторная деятельность
- •13.3. Свойства нервных центров
- •13.4. Координация рефлекторных процессов
- •13.5. Частная физиология
- •13.5.1. Спинной мозг
- •Ного мозга по Рекседу. Цифрами обозначены слои нерв пых клеток
- •13.5.2. Продолговатый мозг и варолиев мост
- •13.5.3. Средний мозг
- •13.5.4. Ретикулярная формация
- •13.5.5. Мозжечок
- •13.5.6. Промежуточный мозг
- •13.5.7. Подкорковые ядра
- •13.6. Физиология вегетативной нервной системы
- •13.1. Строение и функции симпатической и парасимпатической нервных систем
- •Глава 14
- •14.1. Понятие о нервизме
- •14.2. Методы исследования функций коры больших полушарий
- •14.3. Характеристика условных рефлексов и механизм их образования
- •Слуховая
- •14.4. Торможение условных рефлексов
- •14.5. Взаимоотношения возбуждения и торможения в коре больших полушарий
- •14.6. Типы высшей нервной деятельности
- •14.7. Сон и гипноз
- •14.8. Две сигнальные системы действительности
- •14.9. Теория функциональных систем
- •Глава 15 физиология анализаторов
- •15.1. Рецепторные клетки — начальное звено анализатора
- •15.2. Двигательный анализатор
- •15.2.1. Мышечное веретено
- •15.2.2. Сухожильный рецептор гольджи
- •15.2.3. Рефлекс на растяжение мышцы
- •15.3. Кожный анализатор
- •15.3.1. Механорецепторы кожи
- •15.3.2. Терморецепторы кожи
- •15.3.3. Болевые рецепторы кожи
- •15.4. Обонятельный анализатор
- •Рецептора:
- •15.5. Вкусовой анализатор
- •15.6. Слуховой анализатор
- •Активности:
- •15.7. Анализатор положения тела в пространстве
- •15.8. Зрительный анализатор
- •15.8.1. Структура и функция сетчатки
- •15.8.2. Цветовое зрение
- •15.8.3. Переработка зрительных сигналов в сетчатке
- •15.8.4. Защитный аппарат глаза
- •15.9. Анализаторы внутренней среды opi лии 1мл
- •15.9.1. Висцеральные механорецепторы
- •15.9.2. Висцеральные терморецепторы
- •15.9.3. Висцеральные хеморецепторы
- •15.9.4. Болевые висцеральные рецепторы
- •Глава 16 этология
- •16.1. Формы поведения
- •16.2. Поведенческие реакции
- •16.3. Факторы, влияющие на поведение
- •Оглавление
- •Глава 1. Регуляция физиологических функций (т. А. Эйсымонт) 17
- •Глава 2. Физиология возбудимых тканей (к п. Алексеев) 27
- •Глава 7. Физиология дыхания (т. А. Эйсымонт) 291
- •Глава 9. Физиология размножения (и. О. Боголюбова) 351
- •Глава 10. Физиология лактации (в. Г. Скопичев) 392
- •Глава 12. Физиология эндокринной системы (в. Г. Скопичев) 483
- •Глава 13. Физиология центральной нервной системы (а. И. Енукашвили) 544
- •Глава 15. Физиология анализаторов (н.П.Алексеев) 628
- •Глава 16. Этология (т.А. Эйсымонт).., 697
- •214000, Г. Смоленск, проспект им. Ю. Гагарина, 2.
Ние. 5.15. Схематическое изображение функционирования сократительной системы апикальной части эпителиальных клеток тонкой кишки
226
227
но. Источником энергии для трансмембранного переноса субстрата, по-видимому, является градиент Na+, т. е. постоянный поток ионов через мембрану, который создается за счет откачки этих ионов из клетки с затратой энергии Na+/K+ — АТФазой, локализованной в базолатеральной мембране. Таким образом, транспорт большинства веществ через апикальную мембрану энтеро-цитов Na+-зависимый. Отсутствие Na+ в растворе приводит к снижению активного транспорта субстрата.
Всасывание углеводов. Всасывание углеводов происходит только в виде моносахаридов в основном в тонком кишечнике и незначительно в толстом отделе кишечника. Всасывание глюкозы активизируется всасыванием ионов натрия, и не зависит от ее концентрации в химусе. Глюкоза аккумулируется в эпителиоцитах, а последующий ее транспорт в межклеточные пространства и в кровь происходит в основном по градиенту концентрации. Парасимпатические нервные волокна усиливают, а симпатические угнетают процесс всасывания моносахаридов в тонком кишечнике. В регуляции данного процесса важная роль принадлежит железам внутренней секреции. Всасывание глюкозы усиливают гормоны надпочечников, гипофиза, щитовидной железы: серотонин, ацетилхолин. Гистамин, соматостатин тормозят этот процесс.
Всосавшиеся моносахариды из капилляров ворсинок переходят в систему воротной вены печени. В печени значительное их количество задерживается и превращается в гликоген. Часть глюкозы используется всем организмом как основной энергетический материал.
Всасывание белков. Белок, поступающий с пищей, всасывается в виде аминокислот. Поступление аминокислот в эпителиоциты происходит активно с участием переносчиков и с затратой энергии. Из эпителиоцитов в межклеточную жидкость аминокислоты транспортируются благодаря механизму облегченной диффузии. Некоторые аминокислоты могут ускорять или замедлять всасывание других. Транспорт ионов натрия стимулирует всасывание аминокислот. Поступив в кровь, аминокислоты по системе воротной вены попадают в печень.
Всасывание жиров. Жиры в желудочно-кишечном тракте под воздействием ферментов расщепляются на глицерин и жирные кислоты. Глицерин хорошо растворим в воде и легко всасывается в эпителиальные клетки. Жирные кислоты нерастворимы в воде и могут всасываться только в комплексе с желчными кислотами. Желчные кислоты, кроме того, повышают проницаемость эпителия кишечника для жирных кислот. Липиды наиболее активно всасываются в двенадцатиперстной кишке и проксимальной части тощей кишки. Из моноглицеридов и жирных кислот с участием солей желчных кислот образуются мельчайшие мицеллы (диаметр около 100 нм), которые через апикальные мембраны транспортируются в эпителиоциты. В эпителиоцитах происходит ресинтез
триглицеридов. Из триглицеридов, холестерина, фосфолипидов, глобулинов в цитоплазме эпителиоцитов образуются хиломик-роны — мельчайшие жировые частицы, заключенные в белковую оболочку. Они покидают эпителиоциты через латеральные и ба-зальные мембраны, проходя в строму ворсинок, где попадают в центральный лимфатический сосуд ворсинки.
Грудной лимфатический проток впадает в переднюю полую вену, где лимфа смешивается с венозной кровью. Первый орган, в который попадают хиломикроны, — легкие, где они разрушаются и липиды попадают в кровь.
На скорость гидролиза и всасывания жира влияет ЦНС. Парасимпатический отдел вегетативной нервной системы усиливает, а симпатический — замедляет этот процесс. Всасывание жиров усиливают гормоны коры надпочечников, щитовидной железы, гипофиза, а также дуоденальные гормоны — секретин и холецистоки-нин. Вместе с лимфой и кровью жиры разносятся по организму и откладываются в жировых депо для дальнейшего использования в энергетических и пластических целях.
Всасывание воды и солей. Всасывание воды происходит на всем протяжении желудочно-кишечного тракта: большая часть — в тонком кишечнике, а оставшаяся вместе с растворимыми солями—в толстом кишечнике.
Всасывание воды происходит по законам осмоса. Вода легко проходит через клеточные мембраны из кишечника в кровь и обратно в химус. Гиперосмотический химус желудка, попадая в кишечник, вызывает поступление воды из плазмы крови в просвет кишки. Это обеспечивает изоосмотичность среды кишечника. По мере всасывания веществ из просвета кишки в кровь происходит снижение осмотического давления химуса, что вызывает абсорбцию воды.
Решающая роль в переносе воды через эпителиальный слой принадлежит неорганическим ионам, особенно натрия. Поэтому все факторы, влияющие на его транспорт, влияют и на транспорт воды. Кроме того, транспорт воды сопряжен со всасыванием аминокислот и Сахаров.
Ионы натрия, калия и кальция в основном всасываются в тонком кишечнике. Ионы натрия переносятся в кровь как через кишечные эпителиоциты, так и по межклеточным пространствам. В разных отделах кишечника их транспорт отличается. Так, в толстой кишке всасывание натрия не зависит от наличия Сахаров и аминокислот, а в тонкой — зависит. В тонкой кишке сопряжен перенос ионов натрия и хлора, в толстой — перенос ионов натрия и калия. При снижении содержания в организме натрия его всасывание в кишечнике резко увеличивается. Всасывание ионов натрия усиливают гормоны надпочечников и гипофиза, а угнетают гастрин, секретин и холецистокинин.
Основное количество ионов калия всасывается в тонкой кишке посредством активного и пассивного транспорта (по электрохи-
228
229
мическому градиенту). Роль активного транспорта меньше, он, вероятно, сопряжен с транспортом ионов натрия.
Ионы хлора начинают всасываться уже в желудке, но наиболее интенсивно в подвздошной кишке по типу как активного, так и пассивного транспорта.
Двухвалентные ионы всасываются из полости желудочно-кишечного тракта очень медленно. Так, ионы кальция всасываются в 50 раз медленнее ионов натрия. Еще медленнее всасываются ионы железа, цинка, марганца.
Эндокринная функция. В организме функционирует большое количество пептидных гормонов, продуцируемых так называемой диффузной эндокринной системой, клетки которой не агрегированы в железы, а рассеяны по всему телу. Особенно много таких клеток содержится в слизистой оболочке желудочно-кишечного тракта. Их совокупность называют гастроинтестинальной гормональной системой. Открыто большое число биологически активных пептидов, продуцируемых в желудочно-кишечном тракте (табл. 5.2), и некоторые из них уже синтезированы искусственно.