
- •Самостоятельное изучение
- •Модели и система параметров логических элементов
- •2. Типы выходных каскадов цифровых элементов: логический выход.
- •3. Типы выходных каскадов цифровых элементов: выходы с тремя состояниями.
- •Типы выходных каскадов цифровых элементов: выход с открытым коллектором.
- •Паразитные связи цифровых элементов по цепям питания, фильтрация питающих напряжений в схемах цифровых устройств.
- •6 Типовые ситуации при построении цифровых устройств на имс
- •7 Согласование уровней сигналов. Сопряжение кмоп и тлл схем.
- •8 Схемы низковольтной кмоп-логики и их сопряжение с другими схемами.
- •8 Схемы низковольтной кмоп-логики и их сопряжение с другими схемами. (продолжение)
- •9 Элементы индикации
- •9 Элементы индикации (продолжение)
- •10 Риски в комбинационных схемах.
- •11. Дешифраторы, преобразователи кодов
- •12. Шифраторы
- •13. Мультиплексоры.
- •14. Демультиплексоры
- •Компараторы (схемы сравнения).
- •16.Синхронизация в цифровых устройствах.
- •17. Регистры.
- •18. Счетчики. Двоичные счетчики.
- •18. Счетчики. Двоичные счетчики. (продолжение)
- •19. Двоично-кодированные счетчики с произвольным модулем.
- •20. Счетчики с недвоичным кодированием.
- •20. Счетчики с недвоичным кодированием. (продолжение)
- •21. Полиномиальные счетчики.
- •2 1. Полиномиальные счётчики (продолжение)
- •22. Представление чисел с фиксированной запятой.
- •23. Представление чисел с плавающей запятой.
- •24. Погрешности представления чисел.
- •25. Кодирование двоичных чисел со знаком: прямой код
- •26. Кодирование двоичных чисел со знаком: дополнительный код.
- •27. Кодирование двоичных чисел со знаком: обратный код.
- •28. Сложение и вычитание двоичных чисел в форме с фиксированной запятой со знаком в прямых кодах. Особенности выполнения операций над числами без знака.
- •29. Сложение и вычитание двоичных чисел в форме с фиксированной запятой со знаком в дополнительных кодах.
- •30. Сложение и вычитание двоичных чисел в форме с фиксированной запятой со знаком в обратных кодах.
- •30. Сложение и вычитание двоичных чисел в форме с фиксированной запятой со знаком в обратных кодах. (продолжение)
- •31. Переполнение при сложении чисел с фиксированной запятой. Модифицированные коды. [лекции, стр.26-28]
- •31. Переполнение при сложении чисел с фиксированной запятой. Модифицированные коды. [лекции, стр.26-28] (продолжение)
- •32.Умножение чисел с фиксированной запятой: общая схема целочисленного умножения. [подробнее с примерами – лекции, стр. 28-3 , но это след. Вопросы]
- •33. Методы умножения двоичных чисел без знака: умножение с младших разрядов множителя со сдвигом множимого.
- •34. Методы умножения двоичных чисел без знака: умножение с младших разрядов множителя со сдвигом суммы частичных произведений
- •35. Методы умножения двоичных чисел без знака: умножение со старших разрядов множителя со сдвигом множимого.
- •36. Методы умножения двоичных чисел без знака: умножение со старших разрядов множителя со сдвигом суммы частичных произведений.
- •Умножение двоичных чисел со знаком. Умножение чисел в дополнительном коде.
- •38. Логические методы ускорения умножения: алгоритм Бута.
- •39 Логические методы ускорения умножения: модифицированный алгоритм Бута, алгоритм Лемана
- •40. Логические методы ускорения умножения: умножение с обработкой двух разрядов множителя за шаг (умножение на два разряда одновременно)
- •41.Деление чисел с фиксированной запятой: общая схема целочисленного деления.
- •42. Методы деления двоичных чисел без знака: деление с восстановлением остатка.
- •43. Методы деления двоичных чисел без знака: деление без восстановления остатка.
- •44. Деление двоичных чисел со знаком. Деление чисел в дополнительном коде.
- •Сложение и вычитание двоичных чисел в форме с плавающей запятой.
- •46.Умножение чисел с плавающей запятой.
- •47. Деление чисел с плавающей запятой.
- •48.Выполнение операций сложение и вычитание в двоично-десятичном коде.
- •49.Сложение в двоично-десятичном коде чисел со знаком.
- •50.Сумматоры. Одноразрядный сумматор. Многоразрядные сумматоры.
- •50.Сумматоры. Одноразрядный сумматор. Многоразрядные сумматоры. (продолжение)
- •51.Арифметико-логические устройства (алу).
Умножение двоичных чисел со знаком. Умножение чисел в дополнительном коде.
Умножение чисел со знаком может выполняться как в прямом, так и в дополнительном коде. Однако умножение чисел в прямом коде выполняется несколько проще, чем в дополнительном. При умножении чисел в прямом коде перемножаются модули сомножителей А и В, а знак произведения определяется путем сложения по модулю два знаковых разрядов сомножителей и приписывается произведению после завершения перемножения модулей А и В.
Пример. Умножить по второму методу два целых числа без знака:
A = 1111, B = 101, n = 4.
Шаг |
Мт |
Мн и СЧП |
Действие |
0 |
0101 |
00000000 |
СЧП0=0 |
1 |
0101 |
00000000 0000 00000000 |
СЧП0·21 ЧП0 = A·b3 СЧП1 = СЧП0·21+ЧП0 |
2 |
0101 |
00000000 1111 00001111 |
СЧП1·21 ЧП1 = A·b2 СЧП2 = СЧП1·21+ЧП1 |
3 |
0101 |
00011110 0000 00011110 |
СЧП2·21 ЧП2 = A·b1 СЧП3 = СЧП2·21+ЧП2 |
4 |
0101 |
00111100 1111 01001011 |
СЧП3·21 ЧП3 = A·b0 P = СЧП4 = СЧП3·21+ЧП3 |
Во всех ЭВМ общепринято представлять числа со знаком в форме с фиксированной запятой в дополнительном коде. По этой причине более предпочтительны варианты, не требующие преобразования сомножителей и обеспечивающие вычисления непосредственно в дополнительном коде. При перемножении чисел в дополнительном коде знак произведения формируется автоматически вместе с произведением. Выполнение операции умножения в дополнительном коде имеет одну принципиальную особенность, которая проявляется при выполнении операции арифметического сдвига вправо для суммы частичных произведений – освободившиеся при сдвиге значащие позиции должны заполняться не нулем, а значением знакового разряда сдвигаемого числа. Однако, следует учитывать, что это правило начинает действовать лишь с момента, когда среди анализируемых разрядов множителя появляется первая единица.
Выполнение операции умножения в дополнительном коде распадается на два случая.
1. Множимое произвольного знака, множитель положительный.
Процедура умножения протекает аналогично умножению беззнаковых чисел, с учетом сделанного замечания об арифметическом сдвиге СЧП. В случае отрицательного множимого результат умножения отрицательный, поэтому он получается в дополнительном коде
2. Множимое произвольного знака, множитель отрицательный.
Так как множитель отрицателен, он записывается в дополнительном коде [В]доп = 2n+1 - [В], и в цифровых разрядах кода будет представлено число 2n - |В|. При типовом умножении (как в случае В ≥ 0) получим
Р’ = А.(2n - |B|) = -|В|.А + А.2n. Псевдопроизведение Р’ больше истинного произведения Р на величину A·2n, что и необходимо учитывать при формировании окончательного результата. Для этого необходимо выполнить коррекцию результата, которая заключается в том, что после последнего сдвига из полученного псевдопроизведения вычитается избыточная величина A·2n.